
1

Introduction

What is SAS?

SAS is a software package for managing large amounts of

data and performing statistical analyses.

It was created in the early 1960s by the Statistical Department

at North Carolina State University. Today SAS is

developed and marketed by SAS Institute Inc. with head

office in Cary, North Carolina, U.S.A.

2

Introduction (cont.)

The SAS System
The SAS System is mainly used for

- Data Management (about 80% of all users)

- Statistical Analysis (about 20% of all users)

The power of SAS lies in its ability to manage large data sets. It is fast and

has many 2statistical and non-statistical features.

The disadvantage of SAS is its steep learning curve. It takes quite a bit of

an effort to get started. User-friendly interfaces do exist, though.

3

Introduction (cont.)

SAS Programming
SAS programming works in two steps:

Data Step

1. reads data from file

2. makes transformations and adds new variables

3. creates SAS Data Set

Proc Step

4. uses the SAS Data Set

5. produces the information we want, such as tables, statistics,

graphs, web pages
4

Introduction (cont.)

Data and Proc Steps
Example of a SAS program:

data work.main;

set work.original;

age=1997-birthyr; Data Step
bmi=weight/(height*height);

run;

proc print data=work.main;

var id age bmi;

run;

Proc Steps
proc means data=work.main;

var age bmi;

run;

5

The SAS Environment

Windows

The main feature of SAS is its division of the main window

into two halves. The left part is a navigator of SAS libraries

and Results (from the Output window).

The right part is divided into three separate windows:

- Program window or Enhanced Editor

- Log window

- Output window

6

The SAS Environment (cont.)

Output and Log Windows

The result of a program execution is printed to the Output

window. There you will find the prints, tables and reports,

etc.

A log file is printed to the Log window.

The log file contains information about the execution,

whether it was successful or not. It usually points out your

mistakes with warning and error messages so that you can

correct them.

7

The SAS Environment (cont.)

Example: SAS Log
65 proc gplot data=work.influnce;
66 plot di*pred / vaxis=axis1 haxis=axis1;
ERROR: Variable DI not found.
NOTE: The previous statement has been deleted.
67 run;

Make a habit of checking the Log window after every

execution.

Even if SAS has accepted and executed the program, you may

have made a methodological error. Check the note on how

many observations were read, and if there were any

missing values.

8

The SAS Environment (cont.)

Example: SAS Output

patientens alder

Cumulative
ALDER Frequency Frequency

0 - 24 41 41
25 - 44 176 217
45 - 64 77 294
65- 25 319

9

The SAS Environment (cont.)

File Types

These files are created by SAS:

- .sas file (SAS program)

- .log file (Log)

- .lst file (Output)

The SAS data sets are saved as .sd7 or .sas7bdat files.

(Other file types, e.g. catalogs, are also used and created by

SAS, but we will not pursue this any further.)

10

The SAS Environment (cont.)

Using the SAS System

You work with SAS using

- Menus and Toolbar

- Command Line

- Key Functions F1-F12

11

The SAS Environment (cont.)

Example

Three different ways to Open a File in the Enhanced Editor:

1. Menus: choose File + Open

2. Toolbar: press the icon for “Open”

3. Command line: write

include ‘N:\temp\bp.sas’

and press Enter.

12

The SAS Environment (cont.)

Commands and Keys

13

The SAS Environment (cont.)

Write and Read

In the Enhanced Editor you can

- create new, or edit existing, programs

- submit programs

- save programs (an unsaved file is marked with * after the

file name)

You can NOT edit the log file or the output file in their

windows. They are only readable. If you wish to edit these

files, save them and use the Enhanced Editor or Word.

14

SAS syntax

Statements

The SAS code (syntax) consists of statements. Statements

mostly begin with a keyword, and they ALWAYS end

with a SEMICOLON.

data work.cohort;

set course.males98;

run;

proc print data=work.cohort;

run;

Examples of keywords: data, set, run, proc.

15

SAS syntax (cont.)

Statements
SAS statements can begin and end anywhere on a line.

data work.cohort;

One or several blanks can be used between words.

data work.cohort;

One or several semicolons can be used between statements.

data work.cohort;;;

;

16

SAS syntax (cont.)

Statements
The statement can begin and end on different lines.

data

work.cohort;

SAS will not object to several statements on the same line.

However, it is not considered good programming to have

more than one statement per line. It makes the code

difficult to read. Avoid this!

data work.cohort; set course.males98; run;

17

SAS syntax (cont.)

Indenting to improve readability

Improve the readability of your program by adding more
space to the code (= indenting).

Begin data steps and proc steps in the first position, as far left
as possible. The ending run statement should also be in the
first position.

All statements in between should start a few blanks in from
the left margin.

This creates blocks of data steps and proc steps, and you can
easily see where one ends and another begins.

18

SAS syntax (cont.)

Example of Indenting

data work.height;

infile 'h:\mep\rawdata_height.txt';

input name $ 1-20

kon 21

alder 22-23

height 24-30;

if kon=0 and (height ne .) then

do;

if 0<height<81.75 then lnapprx=50;

else

if 81.75<=height then lnapprx=100;

end;

else lnapprx=.;

run;

19

SAS syntax (cont.)

Indenting

Within statements it is also VERY useful to use indenting.

Put similar syntactic words in the same position below each

other.

Use blank lines a lot!

Markers of blocks should be placed in the same position

below one another (e.g. data-run, proc-run, if-else, do-end).

20

SAS Data Sets

What is a SAS Data Set?

A SAS data set is a special file type (.sas7bdat) which

consists of a descriptive part and a data part.

The DESCRIPTIVE part includes

- general information, such as data set name, date of creation,

number of observations and variables etc.

- variable information, such as variable name, type (character

or numeric), format, length, label etc.

21

SAS Data Sets (cont.)

The Data

The DATA part is the data values.

Data is organised with observations in the rows and variables

in the columns.

22

SAS Data Sets (cont.)

Descriptive Part

Proc CONTENTS prints the descriptive part of a data set.

The CONTENTS Procedure

Data Set Name: PPT_EX8.MAIN Observations: 64
Member Type: DATA Variables: 9
Engine: V8 Indexes: 0
Created: 17:17 Tuesday, August 7, 2001 Observation Length: 72
Last Modified: 17:17 Tuesday, August 7, 2001 Deleted Observations: 0
Protection: Compressed: NO
Data Set Type: Sorted: NO
Label:

-----Alphabetic List of Variables and Attributes-----
Variable Type Len Pos Format Informat
ƒƒƒ
2 BIRTHYR Num 8 0 BEST8. F8.
5 CASE_1 Num 8 24
1 ID Char 8 56 $8. $8.
4 LENGTH Num 8 16 BEST8. F8.
3 WEIGHT Num 8 8 BEST8. F8.
6 age Num 8 32 4.
8 bmi Num 8 48
9 generatn Char 5 64
7 height Num 8 40

23

SAS Data Sets (cont.)

Data Part

Proc PRINT prints the data part of a data set.

OBS ID BIRTHYR WEIGHT HEIGHT AGE BMI

1 001 1954 62 1.65 43 22.7732
2 002 1956 68 1.67 41 24.3824
3 003 1956 65 1.72 41 21.9713
4 004 1962 56 1.68 35 19.8413
5 005 1954 58 1.59 43 22.9421
6 006 1953 52 1.62 44 19.8141
7 007 1955 69 1.75 42 22.5306
8 008 1955 75 1.73 42 25.0593
9 009 1960 82 1.7 37 28.3737

10 010 1962 68 1.72 35 22.9854
11 011 1961 65 1.68 36 23.0300
12 012 1954 62 1.69 43 21.7079
13 013 1956 58 1.68 41 20.5499
14 014 1962 61 1.64 35 22.6800
15 015 1958 58 1.63 39 21.8300
16 016 1959 62 1.65 38 22.7732
17 017 1962 59 1.64 35 21.9363
18 018 1957 73 1.8 40 22.5309

24

SAS Data Sets (cont.)

Create a Data Set

A SAS data set is created from

- SAS data set (.sas7bdat file)

- raw data file (.txt file)

- another external file through importing (EXCEL file, etc.)

or by

- manually entering the data

25

SAS Data Sets (cont.)

Create a Data Set

To use an existing data set, a .sas7bdat file, is the most

common way to create a SAS data set.

How to create a SAS data set from a raw data file is described

in chapter Read Raw Data Into SAS.

Importing non-SAS data is not trivial. Use File + Import

Data. Ask for help if you run into trouble.

- or use the program STAT-Transfer

26

SAS Data Sets (cont.)

Create a Data Set

The easiest way to manually enter data into SAS is via the

Viewtable facility

You can also use the CARDS or DATALINES statement

27

SAS Data Sets (cont.)

Existing SAS Data Set (.sas7bdat)

Create a SAS data set from an existing SAS data set:

data work.main;

set work.original;

statements;

run;

This will yield an exact copy of the old data set “original”.

The name of the copy is “main”.

Usually we wish to change the new data set, by adding

programming statements after the SET statement.
28

SAS Data Sets (cont.)

Naming Data Sets
PLEASE, use descriptive names for your data sets.

It is not considered clever to name your data sets: final1,

final2, final3, etc.

Other names to avoid are: new, old, mydata, analys, your-

name, etc.

More on this topic in the chapter Naming Data Sets and

Variables.

29

SAS Data Sets (cont.)

Viewtable
The Viewtable facility is a user-friendly tool to look at your

data set without using data steps or proc steps.

You enter the Viewtable window by issuing the “viewtable”

command in the Command line.

This will yield a window very similar to EXCEL, with cells,

rows and columns.

30

SAS Data Sets (cont.)

Viewtable

It is very easy to create a data set in the Viewtable window.

Just enter the data manually into the cells. The variable

names are created by clicking on the column header and

following the instructions.

When you click to save the data set, it is saved into a

.sas7bdat file, which may then be used in any data step or

proc steps in the Enhanced Editor.

31

SAS Data Sets (cont.)

Viewtable

If you wish to open an existing data set into the Viewtable

window, just issue the command

“viewtable name-of-data- set”

and it will open.

You can also open a data set from the Explorer window in the

window area to the left. Just navigate to the right library

and double click on the data set icon.

32

SAS Data Sets (cont.)

Variables

There are two types of variables in SAS: character (char) and

numerical (num).

The type refers to the values the variable have.

Examples of a variable called MONTH:

A character variable: MONTH with values ‘Jan’, ‘Feb’, …,

‘Dec’.

A numerical variable: MONTH with values 1, 2, … , 12.

33

SAS Data Sets (cont.)

Variables

The values of a character variable are between quotes ‘’.

When the value is printed, all characters within the quotes

are printed.

Typical character values are letters, while numerical values

always are digits.

Character variables may include digits as well.

34

SAS Data Sets (cont.)

Variables

Missing values of a character variable are represented by a

blank, while a period “.” (punktum) denotes missing values

of a numeric variable.

Character values can be 32767 characters long at most.

(200 characters in version 6)

Good rule: Never use char variables to store numeric values.

For example, always store Patient Number as a numeric.

35

SAS Data Sets (cont.)

Naming Variables
Variable names (e.g. age, bmi) and data set names (e.g. main,

original)

- can be 32 characters (letters, underscores and digits) long at

most

- can be uppercase or lowercase or mixed (mAiN = MaIn)

- must start with a letter (A-Z) or an underscore (_), not a

digit

36

SAS Data Libraries

What is a SAS Data Library?

A SAS data library is the catalogue where your data sets are

stored.

A data library is like a drawer in a filing cabinet. The cabinet

may have several drawers representing several different

libraries.

A data set is a file within a drawer. A drawer may contain

several files.

37

SAS Data Libraries (cont.)

Figure: SAS Data Libraries

38

SAS Data Libraries (cont.)

WORK and SASUSER
Two data libraries are created automatically by SAS:

WORK and SASUSER.

The WORK library is a temporary library. All its contents are

deleted when you exit SAS. If you wish to keep your data

sets, do not put them in the WORK library.

The SASUSER library is a permanent library. All its contents

are kept when you exit SAS.

39

SAS Data Libraries (cont.)

WORK and SASUSER

The physical location of the permanent SASUSER library is

under ‘C:\’.

It is not especially clever to save all the SAS programs and

data sets in the same folder.

Generally we wish to store them in separate folders for

separate projects or papers.

Therefore, it is possible to create your own permanent

libraries.

40

Submitting a SAS Program

Submit a Program

To submit (= execute) a SAS program:

- Menus: choose Run + Submit, or

- Toolbar: press the icon with “the running man”, or

- Command line: issue “submit” command.

To halt a submitted program press CTRL + BREAK. You

may have to press it a few times.

41

Submitting a SAS Program (cont.)

Submit a Program

When a program is submitted each step (data or proc) is

executed one at a time.

The contents of a data step is performed on each observation

one at a time (i.e. creation of new variables etc.).

Each step generates log to the Log window. Output (if any)

is generated to the Output window.

42

Submitting a SAS Program (cont.)

Check the Log

ALWAYS browse the Log window
after a submission!

If the submission is stopped by errors the data set is
unchanged and you might do incorrect analyses on an old
data set. You will only see it has been stopped by looking
at the log.

(We emphasise this, since we are too well experienced with
the consequences of the opposite.)

43

Submitting a SAS Program (cont.)

Error Messages in the Log

Note (blue): information which do not indicate errors. They

are usually informative to rule out any methodological

errors in you programming.

Warning (green): points out errors which SAS could correct

itself. The execution was performed with these changes.

Still you should check whether it was done properly.

Example: misspelled keywords.

44

Submitting a SAS Program (cont.)

Error Messages in the Log

Error (red): serious errors which SAS could not handle. The

execution was stopped. These errors must be corrected by

you. Example: forgotten semicolons, invalid options,

misspelled variable names.

Especially if you are updating data sets, be aware that red

errors mean NO updating!

45

Submitting a SAS Program (cont.)

Unbalanced Quotes

A special type of syntactic error is unbalanced quotes (‘’).

Quotes must come in pairs. If they do not, the execution will

keep on running forever. You halt it by submitting

’;

46

Submitting a SAS Program (cont.)

Enhanced Editor

When you press submit, all the code in the Enhanced Editor is

executed.

If you only wish to submit a limited number of rows of the

program code, mark it and press submit.

47

The Data Step

Data Statement

Data sets are created through a data step. The data step begins

with a DATA statement.

General form of the DATA statement:

data SAS-data-set;

The SAS-data-set is a name of the form

libref.filename

48

The Data Step (cont.)

Data Statement

To create a data set ORIGINAL in the temporary library

WORK:

data work.original;

When using the temporary WORK library it is possible to

skip the work prefix and just write:

data original;

49

The Data Step (cont.)

Create Variables

A new variable is created by:

variable=expression ;

The expression may consist of numbers, other variables and

operators such as

+ addition

- subtraction

* multiplication

/ division

** exponentiation (potensopløftning)

50

The Data Step (cont.)

Examples

data work.main;

set work.original;

age=1997-birthyr;

height=height/100;

bmi=weight/(height*height);

run;

51

The Data Step (cont.)

Functions

Useful are the predefined functions in SAS, such as

exp(argument) exponential function

log(argument) natural logarithm

int(argument) the integer part of a numeric argument

There are also non-mathematical SAS specific functions. A

list of useful functions may be found in the SAS manual

SAS Language (pp 521-616).

52

The Data Step (cont.)

Examples

data work.main;

set work.original;

highest=max(height1, height2, height3);

birthyr=year(brthdate);

total=sum(x1,x2,x3,x4,x5);

run;

53

The Data Step (cont.)

Variable Names

If you are creating a series of variables, such as repeated

measurements, put the order number at the end of the

name, e.g. x1, x2, x3, since

total=sum(x1,x2,x3,x4,x5) ↔ total=sum(of x1-x5)

The use of the notation x1-x5 is widely accepted in many

expressions and procedures. It will not work if the order

number is in the middle of the name.

Also see the chapter Naming Data Sets and Variables.

54

The Proc Steps

Procedures

A procedure (proc) is a predefined function that operate on

data sets. By specifying the predefined statements in the

procedure you can adapt it to your needs and wishes.

Examples of procedures:

proc contents prints the descriptive part of a data set

proc print prints the data part of a data set

proc freq creates frequency tables, etc.

proc means calculates means and other statistics

55

The Proc Steps (cont.)

Data Step Vs. Proc Step

Usually, for beginners as well as among advanced users, the
data step is more comprehensible as a concept. Not seldom
is extensive programming done in the data step, when the
same result easily could have been obtained through a
simple option in a procedure.

As a rule, operations on observations (within rows) are done
in the data step, e.g. adding two variables together to make
a third.

Operations on variables (within columns) are done in a proc
step, e.g. taking the mean of a variable.

56

The Proc Steps (cont.)

Proc CONTENTS
The CONTENTS procedure prints out the descriptive part of

a data set.

The descriptive part includes:

- General information: data set name, number of

observations, number of variables, etc.

- Variable information: variable name, type, length, position,

format, label, etc.

57

The Proc Steps (cont.)

Proc CONTENTS
The general form of the CONTENTS procedure:

proc contents data=SAS-data-set;

run;

Example:

libname course ‘h:\SasAtMEP\Course’;

proc contents data=course.main;

run;

58

The Proc Steps (cont.)

Proc PRINT
The PRINT procedure prints out the data part of a data set.

It is possible to choose which variables to print. If none are

chosen, all variables will be printed.

The first column is the OBS column, which indicates

observation. If there are more variables than will fit into the

output window, the output is split and the exceeding

variables printed on the following page. The OBS column

is reprinted to indicate observation.

59

The Proc Steps (cont.)

Proc PRINT
The general form of the PRINT procedure:

proc print data=SAS-data-set;

run;

OR to print a specified list of variables from the data set

proc print data=SAS-data-set;

var variable1 variable2 variable3 ... ;

run;

60

The Proc Steps (cont.)

Proc PRINT
Examples:

proc print data=course.main;

run;

proc print data=course.main;

var age bmi;

run;

61

The Proc Steps (cont.)

Proc FREQ
The FREQ procedure is mainly used to create frequency

tables, although it has a wide range of statistical features as

well.

It creates both one-way and multiple-way tables.

(FREQ is pronounced “frek” in Danish and “freek” in

English.)

62

The Proc Steps (cont.)

Proc FREQ
The general form of FREQ procedure:

proc freq data=SAS-data-set;

tables var1;

run;

OR for a two-way table

proc freq data=SAS-data-set;

tables var1 * var2 / nopercent norow nocol;

run;

63

The Proc Steps (cont.)

Proc FREQ
Example one-way table:

proc freq data=course.main;

tables age;

run;

The SAS System

Cumulative Cumulative
AGE Frequency Percent Frequency Percent
ƒƒƒ
35 4 22.2 4 22.2
36 1 5.6 5 27.8
37 1 5.6 6 33.3

…
43 3 16.7 17 94.4
44 1 5.6 18 100.0

64

The Proc Steps (cont.)

Proc FREQ
Example two-way table:

proc freq data=course.main;

tables case*age/nopercent nocol norow;

run;

The nopercent option suppresses the printing of cell

percentages.

Nocol and norow suppress column and row cell percentages

respectively.

65

The Proc Steps (cont.)

Proc FREQ
The SAS System

TABLE OF AGE BY CASE_1

AGE CASE_1

Frequency‚ 0‚ 1‚ Total
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ

35 ‚ 3 ‚ 1 ‚ 4
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ

36 ‚ 1 ‚ 0 ‚ 1
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ

37 ‚ 0 ‚ 1 ‚ 1
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ

...
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ

44 ‚ 0 ‚ 1 ‚ 1
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
Total 9 9 18

66

The Proc Steps (cont.)

Proc SORT
The SORT procedure sorts the data set according to a chosen

variable. The sorted data set replaces the unsorted data set,

unless you define an OUT data set.

The SORT procedure can sort by several variables, in

ascending (default) or descending (option) order.

Missing values are defined as minus infinity, i.e. less than all

other numeric values.

67

The Proc Steps (cont.)

Proc SORT
The general form of the SORT procedure:

proc sort data=SAS-data-set out=SAS-data-set;

by variables;

run;

OR if you want descending order

proc sort data=SAS-data-set out=SAS-data-set;

by descending variables;

run;

68

The Proc Steps (cont.)

Proc SORT
Example:

proc sort data=course.main out=course.sortage;

by case_1 age;

run;

This will yield a data set called course.sortage, where the

observations are sorted by case_1 and within each category

of case_1 by age.

69

The Proc Steps (cont.)

Proc SORT
There is no result in the Output window from proc SORT, but

a proc PRINT of data set course.sortage gives:

OBS ID BIRTHYR WEIGHT HEIGHT AGE BMI CASE_1

1 010 1962 68 1.72 35 22.9854 0
2 014 1962 61 1.64 35 22.6800 0
3 017 1962 59 1.64 35 21.9363 0
4 011 1961 65 1.68 36 23.0300 0

...
9 012 1954 62 1.69 43 21.7079 0

10 004 1962 56 1.68 35 19.8413 1
11 009 1960 82 1.7 37 28.3737 1
12 002 1956 68 1.67 41 24.3824 1
13 003 1956 65 1.72 41 21.9713 1
14 007 1955 69 1.75 42 22.5306 1

...
17 005 1954 58 1.59 43 22.9421 1
18 006 1953 52 1.62 44 19.8141 1

70

The Proc Steps (cont.)

Proc MEANS
The MEANS procedure calculates basic statistics. By default

the statistics are

N = number of non-missing observations

Mean = mean value, average

Std Dev = standard deviation

Minimum = minimum value

Maximum = maximum value

Optional statistics include Nmiss (number of missing

observations), range (maximum-minimum), etc.

71

The Proc Steps (cont.)

Proc MEANS
The general form of MEANS procedure:

proc means data=SAS-data-set;

run;

This will yield summary statistics on all variables in the data

set.

Missing values are excluded from the analysis.

72

The Proc Steps (cont.)

Proc MEANS
Example:

proc means data=course.main;

run;

The MEANS Procedure
Variable N Mean Std Dev Minimum Maximum
ƒƒ
BIRTHYR 62 1959.35 3.3294354 1953.00 1967.00
WEIGHT 63 61.7460317 6.5129356 47.0000000 80.0000000
LENGTH 64 1.6675000 0.0617213 1.4800000 1.8000000
CASE_1 64 0.4687500 0.5029674 0 1.0000000
age 62 37.6451613 3.3294354 30.0000000 44.0000000
height 64 1.6675000 0.0617213 1.4800000 1.8000000
bmi 63 22.1982718 1.9262282 17.9591837 29.3847567
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƑƒƒ

Naturally, the character variable ID is not displayed.

73

The Proc Steps (cont.)

Proc MEANS
You can modify the proc MEANS code to suit your wishes:

- To specify the number of decimals used in the printout add

the option MAXDEC.

- If you are only interested in a selection of variables, use a

VAR statement.

74

The Proc Steps (cont.)

Proc MEANS
Example:

proc means data=course.main maxdec=2;

var age bmi;

run;

Variable N Mean Std Dev Minimum Maximum
ƒƒƒ

AGE 18 39.44 3.24 35.00 44.00
BMI 18 22.65 1.95 19.81 28.37
ƒƒƒ

75

The Proc Steps (cont.)

Proc MEANS
In proc MEANS it is possible to calculate statistics on

subgroups of the data set, e.g. the mean bmi and age for

cases and controls separately.

There are two different ways to deal with subgroup statistics,

depending on what output you are interested in:

- BY statement

- CLASS statement

76

The Proc Steps (cont.)

Proc MEANS
The BY statement:

proc means data=course.main maxdec=2;

var age bmi;

by case_1;

run;

The BY statement requires that the data set has previously

been sorted according to the BY variable.

77

The Proc Steps (cont.)

Proc MEANS
Result from BY statement:

CASE_1=0
The MEANS Procedure

Variable N Mean Std Dev Minimum Maximum
ƒƒ
age 32 37.50 3.08 33.00 44.00
bmi 34 22.09 1.95 17.96 29.38
ƒƒ

CASE_1=1

Variable N Mean Std Dev Minimum Maximum
ƒƒ
age 30 37.80 3.62 30.00 44.00
bmi 29 22.33 1.92 19.61 27.34
ƒƒ

78

The Proc Steps (cont.)

Proc MEANS
The CLASS statement:

proc means data=course.main maxdec=2;

var age bmi;

class case_1;

run;

The CLASS statement does NOT require any sorting.

79

The Proc Steps (cont.)

Proc MEANS
Result from CLASS statement:

The MEANS Procedure

N
CASE_1 Obs Variable N Mean Std Dev Minimum Maximum

ƒƒ
0 34 age 32 37.50 3.08 33.00 44.00

bmi 34 22.09 1.95 17.96 29.38
1 30 age 30 37.80 3.62 30.00 44.00

bmi 29 22.33 1.92 19.61 27.34
ƒƒ

80

The Online HELP

Quick Help on Syntax

SAS has a very good ONLINE HELP. In this help you can

get full information on syntax. For more theoretical issues

you should use the paperback manuals or the Online

Documentation (see later on how to use them).

The online help is accessed through the Command line and

command “help”.

help print

help means

(Do not write “proc” before the process name.)

81

The Online HELP (cont.)

Using the Online Help

When a help command is issued the HELP Window will open

with topics:

Introduction

Syntax

Additional Topics (occasionally)

To get full information on how to write the code, choose

SYNTAX.

82

The Online HELP (cont.)

Example

As an example, access online help for proc MEANS.

“help means” + choose SYNTAX

These are all the possible statements that proc MEANS

accept. If you want to know more about a specific

statement just click on it and read:

83

The Online HELP (cont.)

Example
PROC MEANS: Syntax

PROC MEANS <option(s)> <statistic-keyword(s)>; BY
<DESCENDING> variable-1 <... <DESCENDING> variable-
n><NOTSORTED>;

CLASS variable(s) </ option(s)>;
FREQ variable;
ID variable(s);
OUTPUT <OUT=SAS-data-set> <output-statistic-specification(s)>
<id-group-specification(s)> <maximum-id-specification(s)>
<minimum-id-specification(s)> </ option(s)> ;
TYPES request(s);
VAR variable(s) < / WEIGHT=weight-variable>;
WAYS list;
WEIGHT variable;

84

The Online HELP (cont.)

Explanation to the Online Help Text

- underlined word = keyword referring to a statement

(statements within a procedure are optional, the PROC and

the RUN statements are required)

- black word = required if the corresponding keyword is used

- words within “< >” = optional, not required

- words separated by “|” = possible choices of values for a

specific option

85

The Online HELP (cont.)

Example

If you click on the “PROC MEANS”, a list of possible
options will be displayed.

Among them is the MAXDEC= option which we have
already used. The equal sign is required. Next to
MAXDEC= is the black word “number”. If you use the
MAXDEC option you are required to fill in a number
corresponding to the maximum number of decimals to be
displayed.

(The exact conventions depend on which version of the help
you use…. –pd)

86

Subsetting a Data Set

Subsets of Data

Often one wants to use only a subset of a data set, e.g.

persons older than 60 years, women, cases etc.

This is particularly useful when performing data cleaning, and

you only want to print the observations with extreme values

of a variable, say blood pressure > 200.

87

Subsetting a Data Set (cont.)

WHERE option

In procedures you use the WHERE data set option to subset

the data set.

proc print data=SAS-data-set(where=(expression));

run;

The WHERE data set option may be used in any procedure. It

can also be used in data steps, although it is less usual.

data course.cases;

set course.main(where=(case_1=1));

run;

88

Subsetting a Data Set (cont.)

WHERE option

The expression must be a logical one, resulting in true or

false.

Only observations for which the expression is true will be

used in the proc step.

Examples of expressions are:

where=(birthyr gt 1950)

where=(1947<birthyr<1950)

where=(birthyr=1947)

89

Subsetting a Data Set (cont.)

Conditional Operators

Possible conditional operators (use sign or abbreviation):

= eq equal to

^= ne not equal to

> gt greater than

< lt less than

>= ge greater than or equal to

<= le less than or equal to

90

Subsetting a Data Set (cont.)

Logical Operators

You can also combine several expressions by using logical

operators:

AND if all expressions are true then the

compound expression will be true,

else it is false

OR if any of the expressions are true, then the

compound expression will be true,

else it is false

91

Subsetting a Data Set (cont.)

Examples
proc freq data=course.main(where=(birthyr<1950 and case_1=1));

... ;

run;

proc means data=course.main(where=((birthyr<1950 or

birthyr>1953)

and

(case_1 ne .)));

... ;

run;

We recommend that you use parentheses as much as you can.

It will enhance the reading as well as reduce the errors.

There is no limit to how many pairs you are allowed to use.

92

Subsetting a Data Set (cont.)

Special Operators

Special operators to use with the WHERE option:

IS MISSING true if value is missing

BETWEEN - AND true if value falls within the range

Examples:

where=(birthyr is missingis missingis missingis missing) ↔ where=(birthyr=.)
where=(birthyr betweenbetweenbetweenbetween 1950 andandandand 1952) ↔

↔ where=(1950<=birthyr<=1952)

93

Subsetting a Data Set (cont.)

Special Operators

Special character operators to use with the WHERE option:

LIKE true if value is identical to the argument

where=(lastname like ‘Johnsson’);

94

Subsetting a Data Set (cont.)

Special Operators

The power of the LIKE operator is that you can use different

types of matching arguments:

‘Smi%’ matches all character values that begin

with “Smi”

‘%th’ matches all character values that end

with “th”

95

Subsetting a Data Set (cont.)

Special Operators

‘Smi_’ matches all character values that are

four characters long and begin with

“Smi”

‘Smi_ _’ matches all character values that are

five characters long and begin with

“Smi”

96

Subsetting a Data Set (cont.)

Special Operators

Another special operator is CONTAIN.

CONTAIN yields true if any string of the value matches the

argument.

where=(lastname contains ‘nss’);

All last names with the letters “nss” in them will be selected.

97

Subsetting a Data Set (cont.)

Create a Subset

Sometimes you want to make a new data set from a subset.

These are two ways to accomplish this:

data course.cases(where=(case_1=1));

set course.main;

run;

which will delete the redundant observations at the end of the
data step.

98

Subsetting a Data Set (cont.)

Create a Subset

data course.cases;

set course.main(where=(case_1=1));

run;

which will delete the redundant observations at the beginning
of the data set.

However, a good advice is to minimise the number of data

sets as much as possible. The fewer data sets the better!

There is nearly always a procedure to use on the main data

set instead of creating a new data set.

99

Subsetting a Data Set (cont.)

WHERE statement

There is a third way too, the WHERE statement:

data course.cases;

set course.main; where (case_1=1);

run;

Note that no equal sign is used in the WHERE statement!

Apart from the equal sign, the WHERE statement works as
the WHERE option.

May also be written if case_1=1;

100

Subsetting a Data Set (cont.)

OBS and FIRSTOBS

In both data and proc steps you can use the OBS data option

to subset a specific range of observations.

To subset the ten first observations:

proc print data=course.main(obs=10);

To subset observations 5 to 10:

proc print data=course.main(firstobs=5 obs=10);

Note that no WHERE is used!

101

Subsetting a Data Set (cont.)

Subsetting IF

There is one occasion when a WHERE statement will not

work, namely if you wish to condition on a variable which

you create in that same data step.

Instead you can use a subsetting IF statement:

if (your-expression);

102

Subsetting a Data Set (cont.)

Example

data course.less20yr;

set course.main;

age75=1975-birthyr;

if (age75 < 20);

run;

This will yield a data set where all the observations were

younger than 20 yrs in 1975.

103

Subsetting a Data Set (cont.)

Delete Observations

It is possible to delete both observations and variables from a

data set.

Observations are deleted through the DELETE statement:

if expression then delete;

(The IF-THEN statement is explained in detail later on.)

104

Subsetting a Data Set (cont.)

Example

data course.after65;

set course.main;

if birthyr<1965 then delete;

run;

This will yield a data set where all observations with

birthyr<1965 have been deleted.

105

Subsetting a Data Set (cont.)

DELETE vs. WHERE vs. IF

The same result could have been obtained through a WHERE
statement, or by a subsetting IF

if birthyr>=1965;

However, if variable BIRTHYR is created in the same data
step, then you need to use IF or a WHERE data set option
on the target data set:

data course.after65(where=(birthyr>65));

...;

run;

106

Subsetting a Data Set (cont.)

Delete Variables

To delete variables use either of the KEEP and DROP

statements.

keep variable1 variable2 ... ;

drop variable1 variable2 ... ;

The KEEP statement will yield a data set where all variables

NOT listed in the KEEP statement list are deleted.

The DROP statement will yield a data set where all variables

listed in it are dropped.

107

Subsetting a Data Set (cont.)

Delete Variables

You use KEEP and DROP in the same way as WHERE,

either as a data set option, or as a statement in a data step.

Thus KEEP and DROP data set options can be used in

procedures as well.

Be aware that you can NOT use both KEEP and DROP in the

same data step.

108

Subsetting a Data Set (cont.)

Examples

KEEP statement:

data course.half;

set course.main;

keep birthyr age case_1;

run;

109

Subsetting a Data Set (cont.)

Examples

KEEP data set option:

data course.half(keep=birthyr age case_1);

set course.main;

run;

or

data course.half;

set course.main(keep=birthyr age case_1);

run;

110

IF-THEN-ELSE

IF-THEN-ELSE

Quite often one wishes to create a variable of the form

1 if age<30
X =

0 else

The value of X depends on the value of variable age.

111

IF-THEN-ELSE (cont.)

IF-THEN-ELSE Statement

To define the X variable in SAS is simple. The code is as

follows:

data course.groups;

set course.main;

if (age<30) then X=1;

else X=0;

run;

Note, that since a missing value is interpreted as negative infinity, it will fall under
X=1. More about this problem shortly.

112

IF-THEN-ELSE (cont.)

IF-THEN-ELSE Statement

The general form of the IF-THEN-ELSE statement is

if expression1 then expression2 ;

else expression3 ;

Expression1 must be a logical expression yielding either true

or false.

If expression1 is true than expression2 is calculated.

If expression1 is false then expression3 is calculated.

113

IF-THEN-ELSE (cont.)

Example

It is very useful to use several IF-THEN-ELSE statements in

a series.

if (age<30) then generatn=1;

else

if (30<=age<60) then generatn=2;

else

if (60<=age) then generatn=3;

else generatn=.;

114

IF-THEN-ELSE (cont.)

Example

Say that the age=67, then (age<30) will yield false, and we

will go right to the ELSE line.

There the expression is a new IF-THEN-ELSE statement

where we continue our execution.

(30<=age<60) is false too, and so we continue at the next

ELSE line.

There the expression (60<=age) is true, and consequently we

calculate the THEN-expression generatn=3.

115

Set and Merge

Joining Data Sets

Previously we have taken a subset of a data set. It is also

possible to join (concatenate and merge) data sets together.

Concatenate= adding observations

Merge = adding variables, match data sets

116

Set and Merge (cont.)

SET

To concatenate two or several data sets, use the SET

statement.

data SAS-data-set;

set data-set1 data-set2 data-set3 ... ;

run;

The top observations in the SAS-data-set will be from data-

set1, the next observations from data-set2 and so on.

117

Set and Merge (cont.)

SET

If there are different variables in the data sets, missing values

will be generated for the observations which did not have

the variables before the concatenation..

Variables not present in all the data sets will be found to the

far right of the concatenated data set.

118

Set and Merge (cont.)

Example

We wish to add three observations to our data set

course.main. The three observations are stored in data set

course.extraobs.

data course.concatenate;

set course.main course.extraobs;

run;

119

Set and Merge (cont.)

Example

Concatenate.sas7bdat:

OBS ID BIRTHYR WEIGHT AGE BMI ALDER

1 001 1954 62 43 22.77319 .
2 002 1956 68 41 24.38237 .
3 003 1956 65 41 21.97134 .
4 004 1962 56 35 19.84127 .
5 005 1954 58 43 22.94213 .
6 006 1953 52 44 19.81405 .
7 007 1955 69 42 22.53061 .
8 008 1955 75 42 25.05931 .
9 009 1960 82 37 28.3737 . course.main

10 010 1962 68 35 22.9854 .
11 011 1961 65 36 23.03005 .
12 012 1954 62 43 21.70792 .
13 013 1956 58 41 20.54989 .
14 014 1962 61 35 22.67995 .
15 015 1958 58 39 21.82995 .
16 016 1959 62 38 22.77319 .
17 017 1962 59 35 21.93635 .
18 018 1957 73 40 22.53086 .
19 029 . . . 28.59 48
20 030 . . . 22.14 51 course.extraobs
21 031 . . . 23.85 42

120

Set and Merge (cont.)

Example

Since alder = age it would be nice to transform the three alder

values to age values. Use a RENAME data set option.

rename=(old-var-name=new-var-name);

In the example:

data course.concatenate;

set course.main

course.extraobs(rename=(alder=age));

run;

121

Set and Merge (cont.)

Example
OBS ID BIRTHYR WEIGHT AGE BMI

1 001 1954 62 43 22.77319
2 002 1956 68 41 24.38237
3 003 1956 65 41 21.97134
4 004 1962 56 35 19.84127
5 005 1954 58 43 22.94213
6 006 1953 52 44 19.81405
7 007 1955 69 42 22.53061
8 008 1955 75 42 25.05931
9 009 1960 82 37 28.3737 course.main

10 010 1962 68 35 22.9854
11 011 1961 65 36 23.03005
12 012 1954 62 43 21.70792
13 013 1956 58 41 20.54989
14 014 1962 61 35 22.67995
15 015 1958 58 39 21.82995
16 016 1959 62 38 22.77319
17 017 1962 59 35 21.93635
18 018 1957 73 40 22.53086
19 029 . . 48 28.59
20 030 . . 51 22.14 course.extraobs
21 031 . . 42 23.85

122

Set and Merge (cont.)

MERGE

To merge or match two or several data sets, use the MERGE

statement:

data SAS-data-set;

merge data-set1 data-set2 data-set3 ... ;

by variable;

run;

The first variables in the SAS-data-set will be from data-set1,

the next variables from data-set2 etc.

123

Set and Merge (cont.)

MERGE

The BY variable (matching variable) is usually an

identification variable unique to all observations and

present in all data sets to be merged.

The data sets must be sorted according to the matching

variable before MERGE is used.

If there are different observations in the data sets, missing

values will be generated for observations not present in

other data sets. These observations will be found at the end

of the merged data set.

124

Set and Merge (cont.)

Example

We wish to add a variable to our data set course.main.

The new variable is the number of children each woman has,

variable CHILD.

This variable is stored together with the variable ID in a data

set called course.extravar. ID is our matching variable,

unique for all observations.

125

Set and Merge (cont.)

Example

proc sort data=course.main course.extravar;

by id;

run;

proc sort data=course.extravar;

by id;

run;

data course.merged;

merge course.main course.extravar;

by id;

run;

126

Set and Merge (cont.)

Example
merged.sas7bdat:

OBS ID BIRTHYR WEIGHT AGE BMI CHILD

1 001 1954 62 43 22.7732 1
2 002 1956 68 41 24.3824 0
3 003 1956 65 41 21.9713 2
4 004 1962 56 35 19.8413 2
5 005 1954 58 43 22.9421 0
6 006 1953 52 44 19.8141 3
7 007 1955 69 42 22.5306 1
8 008 1955 75 42 25.0593 2
9 009 1960 82 37 28.3737 4

10 010 1962 68 35 22.9854 .
11 011 1961 65 36 23.0300 2

...
17 017 1962 59 35 21.9363 2
18 018 1957 73 40 22.5309 0
19 029 . . 48 28.59 0
20 030 . . 51 22.14 3
21 031 . . 42 23.85 1

course.main course.extravar

127

Read Raw Data Into SAS

Raw Data

Sometimes you have a raw data file you want to read into
SAS. The data are not stored in a SAS data set, or .sas7bdat
file.

Perhaps data are of the form:

001 Anderson 1954 62 43
002 Askelund 1956 68 41
003 Bengtson 1956 65 41
004 Carner 1962 56 35
005 Holmfors 1954 58 43
006 Johnsson 1953 52 44
...
016 Torberg 1959 62 38
017 Turner 1962 59 35
018 Öhlund 1957 73 40

128

Read Raw Data Into SAS (cont.)

List Input Format

This form of data is called list input format. It means that

each data value is separated by a blank.

List input formatted data have the following characteristics:

- all values contain eight or fewer characters

- values are separated by one or several blanks

- missing values (both numeric and character) must be

written as a single period (.)

- numerical values must include all necessary decimal points

129

Read Raw Data Into SAS (cont.)

INPUT and CARDS

To create a data set using list input formatted data, write

data course.nameincl;

input id $ name $ birthyr weight age;

cards;

001 Anderson 1954 62 43

002 Askelund 1956 68 41

003 Bengtson 1956 65 41

...

016 Torberg 1959 62 38

017 Turner 1962 59 35

018 Öhlund 1957 73 40

;

run;

130

Read Raw Data Into SAS (cont.)

INPUT and CARDS

In the INPUT statement you list the variables in the same

order as they are presented.

If a variable is a character variable, put a dollar sign ($) after

the name.

When there is no dollar sign, then SAS interprets the variable

as a numeric.

131

Read Raw Data Into SAS (cont.)

INPUT and CARDS

The CARDS statement indicates that data lines are to follow.

It is written below the INPUT statement.

Note that no semicolons are present at the end of each data

line, ONLY at the end of all the data. It marks the end of

data entry.

Equivalent to CARDS is the keyword DATALINES.

132

Read Raw Data Into SAS (cont.)

Column Input Format

If the data you wish to read into a data set is specified in

columns (= positions), you may use the column input

format.

001 Andersson 1954 62 43
002 Askelund 1956 68 41
003 Bengtsson 1956 65 41
004 Carner 1962 56 35
005 Holmfors 1954 58 43
006 Johansson 1953 52 44
...
016 Torberg 1959 62 38
017 Wernersson 1962 59 35
018 Öhlund 1957 73 40

----+----1----+----2----+----3

133

Read Raw Data Into SAS (cont.)

Column Input Format

Each variable occupies a specified number of characters or

positions (1 position = 1 column).

The first variable ID is in columns 1-3, NAME in 5-12

(including blanks at the end), BIRTHYR in 13-16 etc.

The ruler below the data is a SAS ruler. It is often used in the

Log window.

Each column is indicated by “-”. The digit 1 indicates column

10, 2 column 20 etc. The + indicates columns 5, 15, 25 etc.

134

Read Raw Data Into SAS (cont.)

Column Input Format

To create a data set using column input formatted data, write

data course.nameincl;

input id $ 1-3 name $ 5-12

birthyr 13-16 weight 18-19 age 21-22;

cards;

001 Andersson 1954 62 43

002 Askelund 1956 68 41

003 Bengtsson 1956 65 41

...

016 Torberg 1959 62 38

017 Wernersson 1962 59 35

018 Öhlund 1957 73 40

;

run;

135

Read Raw Data Into SAS (cont.)

Column vs. List Input Format

The only difference from the code for list input formatted
data is that you must specify the columns in the INPUT
statement. (ID $ 1-3, name $ 5-12, etc.)

Differences in data characteristics:

- values must not contain more characters than are specified
in the input statement

- missing values are written as blank for character variable,
period (.) for numerical

136

Read Raw Data Into SAS (cont.)

Data from .TXT File

To read data (list or column formatted) from external text

files (.txt) use an INFILE statement.

data course.nameincl;

infile ‘h:\SAS-folder\data-file.txt’;

input id $ 1-3

name $ 5-12

birthyr 13-16

weight 18-19

age 21-22

;

run;

137

Read Raw Data Into SAS (cont.)

Data from .TXT File

The INPUT statement is written as before, depending on

whether you have column or list formatted data in the text

file.

No CARDS (or DATALINES) statement is used.

The INFILE statement must be written above the INPUT

statement.

138

Naming Data Sets and Variables

Data Set and Variable Names

The name of a data set or a variable should reflect its

contents.

It is not obvious to an outsider that the variable “rel51yrd”

refers to “relapse 5 years after first diagnosis”. A better

name would perhaps be “relapse5”.

Add comments in the data step to clarify what the variables

are!

139

Naming Data Sets and Variables (cont.)

Data Set and Variable Names

- can be 32 characters (letters, underscores and digits) long at

most

- can be uppercase (versaler) or lowercase (gemena) or

mixed (OrIgInAl = oRiGiNaL)

- must start with a letter (A-Z) or an underscore (_), not a

digit

140

Naming Data Sets and Variables (cont.)

Data Set and Variable Names

The increased character limit to 32 characters in version 8.0 is

welcomed by many SAS users (formerly it was only 8

characters in version 6.12).

But a long name is not always to prefer either. It makes the

code tiresome to read, not to mention write.

A good idea is therefore to try to keep to a maximum of 8 to

12 characters also in future. Use labels.

141

Naming Programs

Program File Names

Contrary to the SAS data set and variable names, there is no

limit to 32 characters when you name the program files.

Do not hesitate to use long names, although the same rules as

for the variables names apply.

Be consistent, no cryptic abbreviations.

142

Organise Your Programming

Structuring SAS Files

Here is a suggestion of how to organise your SAS programs.

It is not presumed to be The Ultimate Structure, but it is a

good start to get organised.

All ideas to improve this structure are most welcome.

143

Appendix

List of Useful Procedures

PROC APPEND = concatenates data sets (compare SET

statement)

PROC CATALOG = administrates SAS Catalogues

PROC CHART = creates simple charts, bar charts, block

charts, pie charts, etc.

PROC COMPARE = compares the contents of two data sets,

or variables within a data set

PROC CONTENTS = prints the descriptive part of a data set

PROC COPY = copies a SAS Data Library or parts of it

PROC CORR = calculates correlation coefficients

PROC DATASETS = lists, renames, deletes data sets etc.
144

Appendix (cont.)

List of Useful Procedures (cont.)

PROC FORMAT = defines formats and informats

permanently or temporarily

PROC FREQ = creates frequency tables and basic statistical

tests

PROC MEANS = creates descriptive statistics

PROC OPTIONS = lists all current SAS System options

values

PROC PLOT = creates simple Y-X plots

PROC PRINT = prints the data part of a data set

PROC PRINTTO = defines destination of output and log, e.g.

when you wish to use an output as input for another

procedure

145

Appendix (cont.)

List of Useful Procedures (cont.)

PROC RANK = calculates ranking of different sorts

PROC REPORT = creates better layout for output

PROC SORT = sorts data sets by one or several variables

PROC SQL = implementing query language SQL, used to

retrieve data sets

PROC STANDARD = standardises variables to a given mean

and variance

PROC SUMMARY = descriptive statistics in form of

summations

PROC TABULATE = descriptive statistics in tables

PROC TRANSPOSE = transposes data sets, i.e. transforms

rows to columns, and vice versa 146

Appendix (cont.)

List of Useful Procedures (cont.)

PROC UNIVARIATE = creates descriptive distribution

statistics and plots, histograms etc.

