Genetic groups model

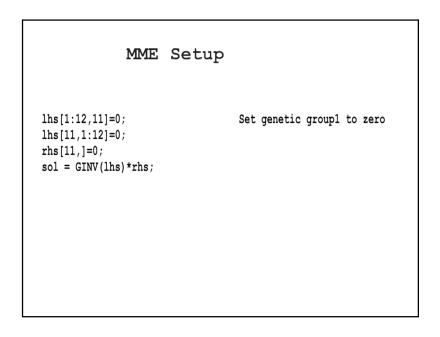
Animal model with genetic groups Alternative method

Anima	al Model with	h Genetic Groups
	y = Xb + Zu	+ ZQg + e
[X`X [Z`X [Q`Z`X	Z`Z+alpha#Ai	X`ZQ][b] [X`Y] Z`ZQ][u] = [Z`Y] Q`Z`ZQ][g] = [Q`Z`Y]

Data Description	
------------------	--

Data f. ID	sex	wwt(k	cg)			
4	М	4.5	_			
5	F	2.9	Assign unknown	sires and da	m with unrelated	phantom
6	F	3.9	parents.			
7	М	3.5				
8	М	5.0	an	s	d	
			1	p1	p2	
Pedigr	ee file:		2	p3	p4	
anim	s	d	3	p5	p6	
1	0	0	4	1	p7	
2	0	0	5	3	2	
3	0	0	6	1	2	
4	1	0	7	4	5	
5	3	2	8	3	6	
6	1	2				
7	4	5				
8	3	6				

Let assign the simple groupin unknown sire and dam are from	
p1,p3,p5 p2,p4,p6,p7	in group1 in group2
Va = 20 Ve = 40	
alpha = Ve/Va	
alpha = (1-h2)/h2	


Start con	nput	in	g						
PROC IML;	A =	{1	0	0	. 5	0	. 5	.25	.25,
$X = \{1 0,$		Ò	1		0	.5			.25,
01,		0	0	1	0	. 5	0	.25	.5,
01,					1			. 5	.125,
10,					0				.375,
1 0;						.25			
					.5				
$Z = \{0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0$	0.	.25	.25	.5	.125	.375	. 5	.25	1};
	'								
0 0 0 0 0 1 0	'								
0 0 0 0 0 0 1 0	,								
0 0 0 0 0 0 0 0									
000000	1};								
$\mathbf{v} = \{4.5, 2.9, 3.9, 3.$	5 5 0	ι.							
$y = \{4.5, 2.9, 5.9, 5\}$	5,5.0	<i>,</i>							

1,	eratio	onsn	ib ic	or al	l an	imais	s an	a u	nĸnc	wn	pare	nts :	ls r	equi	rea
	T	he f	0110	wing	col	umn	are	p1	,p2,		p7,a	a1,a2	2,	.a8	
2	_ (1	•	0	•	0	0	0	-	•	~	25	•	25	105	105
2	={1	0	-	0	-	-		.5						.125	
	0		0	0	0	0	0	.5	0	0	.25	0	.25	.125	.125
	0		1	0	0	0	0	0	.5	0	0	.25	.25	.125	.125
	0		0	1	0	0	0	0	.5	0	0	.25	.25	.125	.125
	0	0	0	0	1	0	0	0	0	. 5	0	.25	0	.125	.25
		0	0	0	0	1	0	0	0	. 5	0	.25	0	.125	.25
	0	0	0	0	0	0	1	0	0	0	.5	0	0	.25	0
	. 5	.5	0	0	0	0	0	1	0	0	.5	0	. 5	.25	.25
	0	0	.5	.5	0	0	0	0	1	0	0	.5	. 5	.25	.25
	0	0	0	0	.5	.5	0	0	0	1	0	.5	0	.25	.5
	.25	.25	0 .5 0	0	0	0	. 5	. 5	0	0	1	0	.25	. 5	.125
	0	0	.25	.25	.25	.25	0	0	. 5	. 5	0	1	.25	.5	.375
	25	25	.25												.5
			.125												.25
														.25	

Next step is find T where A2 = TDT`
Since we can find L A2 = LL` L=T*sqrt(D) Therefore T = L*INV(sqrt(D)) T = L if ignored inbreeding
Therfore we can find T from Cholesky decomposition which make LL`=A2
T = HALF(A2);

```
Next step is define G
     G is genetic group coding for all animals and
         note that only unknown parents are coding
G = \{1 0,
     \begin{bmatrix} 0 \\ 1 \end{bmatrix}, Q is defined from TG
     1 0, Function HALF give upper triangular, so need transpose
     0 1, Then select only part of true animal
      10,
      01,
                   T = HALF(A2);
      01,
      00,
      00,
                   Qinit = T^*G;
      00,
                   0
                           = Qinit[8:15,];
      00,
      0 0, Note:
     0 0, Q can be simply generated without define T by relating each animal to
      O O, matrix G
      0 0};
```

MME Setup $= X^{*}X;$ XPX XPZ $= X^{T} + Z;$ $= Z^{*}Z;$ ZPZ ZPZ2 = Z`*Z+alpha#Ai; $XPZQ = X^*Z*Q;$ $QPZPZQ = Q^*Z^*Z*Q;$ $lhs = (X^*X | | X^*Z$)// || X`*Z*Q (Z`*X || Z`*Z+alpha#Ai || Z`*Z*Q)// (Q`*Z`*X || Q`*Z`*Z || Q`*Z`*Z*Q); rhs = $X^*y // Z^*y // Q^*Z^*y;$

Compute accuracy
<pre>Di = vecdiag(GINV(lhs)); PEV = Di#Ve; I = J(12,1,1); Acc = J(12,1,.); Acc[3:10,] = SQRT(I[3:10,]-Di[3:10,]#alpha);</pre>

Construct BV based on Groups BV = sol[3:10,]; Select BV for true animals gr = sol[11:12,]; Select group estimates BVG = BV+Q*gr; Compute BV based on groups BVG = J(2,1,.)//BVG//J(2,1,.); Add missing for fix and gr

Output								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								

	Animal Model with Genetic Groups (Alternative Method) y = Xb + Zu + ZQg + e
-	X`Z 0][b] [X`y] Z`Z+alpha#Ai11 alpha#Ai12][u] = [Z`y] alpha#Ai21 alpha#Ai22][g] = [0]
	Aill=inv(A), Ail2=-Ail1*Q, Ai22=Q`*Ail1*Q

	Data	Des	cri	ptio	n	
Data fi	le:					
ID	sex	wwt(kg)	an	s	d
4	М	4.5		1	p1	p2
5	F	2.9		2	p3	p4
6	F	3.9		3	p5	p6
7	М	3.5		4	1	p7
8	М	5.0		5	3	2
				6	1	2
Pedigree	e file:			7	4	5
anim	s	d		8	3	6
1	0	0				
2	0	0	p1,p	3,p5		in group1
3	0	0	p2,p	4,p6,p7		in group2
4	1	0				
5	3	2				
6	1	2				
7	4	5				
8	3	6				

Q =	{.5.5, .5.5, .5.5, .25.75, .5.5,
	.5 .5, .375 .625, .5 .5};
	= Ai;
	= -Ai*Q;
	= Ai12`;
Ai22	$= Q^* Ai * Q;$

MME Setup		
<pre>XPZ = X`*Z; ZPZ = Z`*Z; ZPZ = Z`*Z+alpha#Ai11; ZERO = J(2,2,0); Create zero matrix for lhs relate to groups row=2 levels for fix, col= 2 levels for groups lhs = (X`*X X`*Z ZERO)// (Z`*X Z`*Z+alpha#Ai11 alpha#Ai12)// (ZERO` alpha#Ai21 alpha#Ai22);</pre>	Alternative method SOL b1 5.458 b2 4.313 u1 -0.767 u2 -0.923 u3 -0.963 u4 -1.268 u5 -1.099 u6 -0.728 u7 -1.338	SOL BVG b1 5.458 . b2 4.313 . u1 0.117 -0.767 u2 -0.039 -0.923 u3 -0.079 -0.963 u4 0.059 -1.268 u5 -0.215 -1.099 u6 0.157 -0.728
Set genetic group I mean to zero lhs[11,1:12]=0; lhs[1:12,11]=0; Add zero value for 2 groups for RHS rhs = X`*y // Z`*y // J(2,1,0); sol = GINV(lhs)*rhs;	u8 -0.768 g1 0.000 g2 -1.769	u7 -0.233 -1.338 u8 0.116 -0.768 g1 0.000 . g2 -1.769 .