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ABSTRACT

During the transition period, dairy cows are chal-
lenged by increased energy demands and decreased dry 
matter intake, which can induce a variety of metabolic 
disorders, especially fatty liver. Dairy cows suffering 
from mild or moderate fatty liver in this period show no 
distinct clinical symptoms, indicating the occurrence 
of adaptive processes. The process of autophagy (an 
adaptive response) leads to degradation of intracellular 
components to generate energy and maintains cellular 
homeostasis during negative nutrient status. Whether 
autophagy is involved in metabolic adaptations of 
the pathological course of mild fatty liver is unclear. 
Thus, the aim of this study was to determine hepatic 
autophagy status in dairy cows with mild fatty liver. 
Liver samples were collected from healthy cows (n = 
15), defined as having hepatic triglyceride (TG) content 
<1% on a wet weight basis, and cows with mild fatty 
liver (n = 15), defined as having hepatic TG content 
between 1 and 5%. The abundance of the ubiquitinated 
proteins, microtubule-associated protein 1 light chain 
3 (MAP1LC3, also called LC3-II) and sequestosome-1 
(SQSTM1, also called p62) was lower, whereas the 
mRNA abundance of MAP1LC3 and SQSTM1 was 
greater in cows with mild fatty liver. The hepatic 
mRNA abundance of autophagy-related (ATG) genes 
ATG5 and ATG7 was greater in response to fatty liver. 
However, the protein abundance of ATG5 and ATG7 
did not differ between healthy and mild fatty liver 
cows. Together, these data indicate that the formation 
and degradation of autophagosomes is enhanced in the 
liver of cows with mild fatty liver. Besides, these results 

are conducive to define the adaptation mechanisms of 
dairy cows during the transition period. 
Key words: mild fatty liver, metabolic adaptation, 
autophagy, MAP1LC3 (LC3-II)

Short Communication

The transition period in dairy cows, defined as 3 
wk before to 3 wk after parturition, is characterized 
by dramatic physiological changes that impose severe 
challenges from the standpoint of energy balance 
(Ingvartsen, 2006; Loor et al., 2013). A key problem 
during transition is the tremendous increase in energy 
requirements for milk production that, paralleled with 
a decrease in feed intake, drives cows into a state of 
negative energy balance (NEB). As a result, the liver 
undergoes important metabolic adaptations designed to 
accommodate not only the influx of fatty acids but also 
the need for gluconeogenesis to support milk synthesis 
(Ha et al., 2017; Qin et al., 2018). Although several 
adaptive biochemical, transcriptional, and translational 
mechanisms experienced by the liver during the tran-
sition period have been reported (Loor et al., 2013; 
Imhasly et al., 2015; Du et al., 2018b), much less is 
known about the underlying mechanisms that allow he-
patocytes to cope with the decrease in nutrition supply.

Fatty acids are energy-rich molecules (Juárez-
Hernández et al., 2016) that can be catabolized in 
the liver to produce ATP (Lavallard and Gual, 2014). 
However, excessive and sustained body fat mobilization 
results in a sharp increase in the influx of fatty acids to 
the liver, often overwhelming its capacity for complete 
oxidation and export into lipoproteins (Litherland et 
al., 2011; Loor et al., 2013). Clearly, the predisposition 
of bovine liver to accumulate lipid with a sustained 
surge in the influx of fatty acids accounts for the high 
incidence of mild (triglyceride content in the liver of 
1–5%) or moderate (triglyceride content in the liver 
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of 5–10%) fatty liver in the first month after calving; 
incidences ranging from 30 to 40% have been reported 
(Bobe et al., 2004). Ceciliani et al. (2018) reported 
that cows with mild or moderate fatty liver had no 
distinct clinical symptoms and were able to navigate 
the transition period uneventfully; they concluded that 
metabolic adjustments beyond lipid metabolism play 
an important role during NEB.

Autophagy is a highly conserved recycling process 
involving the degradation of harmful or useless proteins 
and organelles in lysosomes (Ravanan et al., 2017). 
During negative nutrient status, autophagy provides 
substrates to sustain cellular metabolism and, hence, 
preserve tissue function (Kim and Lee, 2014). Dairy 
cows with mild fatty liver display energy deficiency 
(Bobe et al., 2004; Du et al., 2018b). Moreover, hepatic 
metabolic activity is enhanced in the dairy cows with 
mild fatty liver (Du et al., 2018b), which would pro-
duce more damaged or useless organelles and proteins. 
Thus, autophagy might be an effective way to offset the 
adverse effects of a prolonged NEB state and degrade 
damaged or useless organelles and proteins. Based on 
this, we hypothesize that autophagy might be enhanced 
in the liver of dairy cows experiencing mild fatty liver. 
Therefore, the objective of this study was to investigate 
hepatic autophagy status in cows with mild fatty liver.

All animal protocols in the present study were ap-
proved by the Ethics Committee on the Use and Care 
of Animals at Jilin University [Changchun, China; 2018 
clinical trial (2018–12047)]. Animals received humane 
care according to the principles and specific guidelines 
presented in Guide for the Care and Use of Agricultural 
Animals in Research and Teaching (FASS, 2010). A 
physical examination of the cows in this study ensured 
the absence of co-morbidities. Cows were fed ad libitum 
once per day at 1100 h, and the composition of the 
basal diet is shown in Supplemental Table S1 (https:​
/​/​doi​.org/​10​.3168/​jds​.2019​-17457). Lactating Holstein 
cows with similar numbers of lactations (median = 3, 
range = 2 to 4) and DIM (median = 6 d, range = 3 to 
9 d) were selected from a 1,000-cow dairy farm located 
in Changchun, Jilin Province, China. Liver triglyceride 
(TG) content is the gold standard for diagnosing fatty 
liver in dairy cows (Bobe et al., 2004), and it was used 
to classify cows as healthy (TG <1%, g/g of wet weight) 
or as having mild fatty liver (TG 1–5%). Fifteen cows 
with mild fatty liver and 15 healthy cows were selected 
via this approach.

Milk yield was recorded on 3 consecutive days at 
0530 and 1500 h. Blood samples were collected with 
5-mL vacuum collection tubes (no anticoagulant, Sanli 
Medical Technology Development Co. Ltd., Liuyang, 
China) on 3 consecutive days via jugular venipuncture 
between 0700 and 0800 h, before feeding, and immedi-

ately centrifuged at 3,500 × g for 15 min at 4°C. Serum 
was obtained and stored at −80°C until analysis. Liver 
biopsies were harvested by an experienced veterinarian. 
First, the intercostal space was shaved. Then, iodine 
scrub and 75% alcohol were used to sanitize the incision 
area, followed by anesthesia with a subcutaneous injec-
tion of 2% lidocaine HCl. A scalpel blade was used to 
make a 3-mm skin incision at the 11th intercostal space 
to allow insertion of a stainless steel trocar (31 cm long 
and 7.5 mm in diameter) into the abdominal cavity, 
directing the point of the trocar toward the left elbow. 
Liver tissue (approximately 150 mg) was immediately 
frozen in liquid nitrogen. Cows were housed in a tiestall 
barn during the study. The description of the cows and 
the baseline characteristics of cows with mild fatty liver 
have been reported previously (Du et al., 2018b). 

Concentrations of glucose, BHB, and fatty acids in 
serum were determined using a Hitachi 7170 autoana-
lyzer (Hitachi, Tokyo, Japan) with commercially avail-
able kits (BHB: cat. no. RB1008; fatty acids: cat. no. 
FA115; glucose: cat. no. GL3815; Randox Laboratories, 
Crumlin, UK). The limits of quantification of glucose, 
BHB, and fatty acids were 0.200 to 35.5 mM, 0.100 to 
5.75 mM, and 0.072 to 2.24 mM, respectively. Addition-
ally, intra-assay CV for glucose, BHB and fatty acids 
were <3.5%, <5%, and <5%, respectively. Interassay 
CV for glucose, BHB, and fatty acids were <10%, 
<10%, and <15%, respectively.

For the determination of TG content, liver tissue 
(~20 mg) was homogenized in 5% Triton-X100 (T8787; 
Sigma-Aldrich Co., St. Louis, MO) and then heated 
in a water bath (85°C) for 3 min. After the sample 
was cooled to room temperature, it was vortexed and 
centrifuged at 2,000 × g for 5 min at 4°C. The superna-
tant was collected and stored at −80°C before analysis. 
The TG content was measured using an enzymatic kit 
(E1013; Applygen Technologies, Beijing, China) follow-
ing the manufacturer’s instructions. Total protein con-
centration was estimated with the bicinchoninic acid 
method (P1511; Applygen Technologies Inc.).

Western blotting was performed as described previ-
ously (Dessauge et al., 2011; Du et al., 2017b). Total 
protein was extracted from liver tissue using a com-
mercial protein extraction kit (C510003; Sangon Bio-
tech Co. Ltd., Shanghai, China), and the bicinchoninic 
acid assay performed to estimate the concentration of 
total protein. A total of 35 µg of protein from each 
sample was separated by 12 or 15% SDS-PAGE. Then, 
gels were electrophoretically transferred to polyvinyli-
dene difluoride membranes. Subsequently, 3% BSA/
Tris-buffered saline/Tween (TBS-T) buffer was used 
to block the membranes at room temperature for 4 
h. The blocked membranes were incubated overnight 
at 4°C with primary antibody against sequestosome-1 
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(SQSTM1, also called p62; 1:2,000, ab101266; Ab-
cam, Cambridge, UK), microtubule-associated protein 
1 light chain 3 (MAP1LC3, also called LC3; 1:1,000, 
ab48394; Abcam), β-actin (1:2,000, ab8226; Abcam), 
ubiquitin (1:200, sc-271289; Santa Cruz Biotechnol-
ogy, Santa Cruz, CA), autophagy-related gene (ATG)5 
(1:500; NB110-53818; Novus Biologicals, Littleton, 
CO), or ATG7 (1:1,000, D12B11; Cell Signaling Tech-
nology Inc., Danvers, MA). After incubation, the mem-
branes were washed with TBS-T in an orbital shaker 
(18-1, Qilinbeier, Haimen, China), and then incubated 
with horseradish peroxidase–conjugated anti-rabbit or 
anti-mouse immunoglobulin at room temperature for 
45 min. Immunoreactive bands were visualized by en-
hanced chemiluminescence solution (Beyotime Biotech-
nology Inc., Shanghai, China). β-Actin was the internal 
control and the intensity of each target protein band 
was expressed relative to that of β-actin. Each sample 
was run in triplicate. Protein intensity was quantified 
using Image-Pro Plus 6.0 (Media Cybernetics, Bethes-
da, MD).

For the quantitative reverse-transcription (qRT) 
PCR assay, total RNA from liver tissue (15 mg) was 
extracted using RNAiso Plus (9108, TaKaRa Bio-
technology Co. Ltd., Dalian, China) according to the 
manufacturer’s instructions. The RNA concentration 
and quality were measured using a K5500 microspec-
trophotometer (Beijing Kaiao Technology Development 
Ltd., Beijing, China) and electrophoresis (1% agarose 
gels). According to MIQE guidelines, an optical density 
ratio at 260 and 280 nm (OD260/OD280) of 1.8 to 2.0 
is an appropriate threshold of suitable RNA quality. 
In our study, the OD260/OD280 ratio of the total RNA 
averaged 1.9.

A total of 1 μg of RNA from each sample was 
reverse-transcribed to cDNA in 25-μL reactions using 
a reverse transcription kit (RR047A, TaKaRa Biotech-
nology Co. Ltd.) according to the supplier’s protocol. 
We evaluated mRNA expression using qRT-PCR with 
the SYBR Green QuantiTect RT-PCR Kit (TaKaRa 
Biotechnology Co. Ltd.) and a 7500 Real-Time PCR 
System (Applied Biosystems/Thermo Fisher Scientific 
Inc., Waltham, MA).

The relative expression of each target gene was 
normalized to reference genes β-actin (ACTB) and 
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 
and calculated using the 2−∆∆Ct method. The qRT-
PCR reaction was performed in triplicate for each cow 
and 15 cows were included per group. The validated 
primers used for SQSTM1, MAP1LC3, ATG5, and 
ATG7 are shown in Supplemental Table S2 (https:​/​
/​doi​.org/​10​.3168/​jds​.2019​-17457). The cycle threshold 
values of ACTB and GAPDH were not affected by liver 
fat content, which validates their usefulness as control 

genes (Connor et al., 2010; Morey et al., 2011; Du et 
al., 2017a; Supplemental Figure S1; https:​/​/​doi​.org/​10​
.3168/​jds​.2019​-17457).

Each measurement in this study was repeated at 
least 3 times. Data were analyzed with SPSS 19.0 (IBM 
Corp., Armonk, NY) or GraphPad Prism 5.0 software 
(Graph Pad Software, San Diego, CA). In this study, 
data from Western blotting and qRT-PCR were normal-
ly distributed and analyzed using paired t-tests; other 
data were not normally distributed and were analyzed 
with Wilcoxon signed-rank test. Data are expressed as 
the mean ± standard error of the mean (SEM); P < 
0.05 was considered statistically significant and P < 
0.01 was markedly significant compared with controls.

The baseline characteristics of control and mild fatty 
liver cows were reported by our previous study (Du et 
al., 2018b). Compared with controls, cows with mild 
fatty liver had numerically greater (P > 0.05) BW. 
Milk production and serum concentration of glucose 
were lower (P < 0.05) in cows with mild fatty liver. 
Body condition score was higher (P < 0.05) in cows 
with mild fatty liver. Serum concentrations of BHB 
and fatty acids were greater (P < 0.05 and P < 0.01, 
respectively) in cows with mild fatty liver, and the TG 
content (g/g of wet weight) was greater (P < 0.01) in 
cows with mild fatty liver.

The abundance of ubiquitinated proteins was lower 
(P < 0.01) in the liver of cows with mild fatty liver 
(Figure 1A and B). The protein abundance of hepatic 
MAP1LC3 and SQSTM1 was lower (P < 0.01) in the 
liver of cows with mild fatty liver (Figure 2A, B and C). 
In contrast, the mRNA abundance of MAP1LC3 and 
SQSTM1 was greater (P < 0.01) in the liver of cows 
with mild fatty liver (Figure 2D and E).

Hepatic protein abundance of ATG5 and ATG7 
did not differ (P > 0.05) between mild fatty liver and 
healthy cows (Figure 3A, B, and C). However, mRNA 
abundance of ATG5 and ATG7 was greater (P < 0.01) 
in the liver of cows with mild fatty liver (Figure 3D 
and E).

Even though previous studies investigated the adap-
tive mechanism of perinatal cows (Loor, 2010; Esposito 
et al., 2014; Ha et al., 2017), the underlying mechanism 
was still indistinct in dairy cows with mild fatty liver. 
Autophagy is an evolutionarily conserved adaptive 
mechanism that maintains cellular homeostasis and 
energy balance by degradation of cellular constituents 
or damaged organelles (Schneider and Cuervo, 2014). 
However, the interaction between autophagy and he-
patic adaptations in postpartum dairy cows with mild 
fatty liver remains obscure. Here, we demonstrated 
that the formation and degradation of autophagosomes 
were enhanced in the liver of cows with mild fatty 
liver. These data suggested that autophagy might be 
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involved in hepatic adaptive mechanisms during the 
onset of mild fatty liver.

Autophagy is a dynamic process, which begins with 
the formation of preautophagosomes that sequester 
targeted cell constituents and fuse with lysosomes to 
form autolysosomes in which the cargos are degraded 
(Nakatogawa et al., 2009; Parzych and Klionsky, 2014). 
During the process, ATG7 activates ATG5 (involved 
in preautophagosome formation) and forms a complex 
with ATG12 and ATG16 (Wei et al., 2019). Subse-
quently, LC3-I is cleaved by the protease ATG4 to form 
LC3-II, which remains on mature autophagosomes un-
til after fusion with lysosomes and is commonly used 
to monitor autophagy. Ubiquitination of proteins or 
organelles is also required for their complete sequestra-
tion in autophagosomes (Allaire et al., 2019); SQSTM1 
(p62) acts as an adaptor protein that interacts with 
LC3-II to target ubiquitinated cargos for autophagy-
specific degradation (Grumati and Dikic, 2018).

Previous studies demonstrated that a greater abun-
dance of ubiquitinated proteins and p62 reflects a 
blocked autophagic flux (González-Rodríguez et al., 
2014; Du et al., 2018a). Conversely, high activity of 
autophagy promotes the degradation of ubiquitinated 
cargos and p62 (Pankiv et al., 2007). Thus, the lower 

abundance of ubiquitinated proteins and p62 in our 
study indicated that degradation of autophagosomes 
was enhanced during mild fatty liver. In addition, al-
though the mRNA abundance of MAP1LC3 was higher, 
protein abundance of LC3-II was lower in mild fatty 
liver cows, further indicating enhanced degradation of 
autophagosomes. It is noteworthy that greater mRNA 
abundance of autophagosome formation molecules 
ATG5 and ATG7 was observed in mild fatty liver cows, 
suggesting enhanced formation of autophagosomes. 
However, the protein abundance of ATG5 and ATG7 
was unchanged, which might result from enhanced deg-
radation of autophagosomes. Altogether, the mRNA 
and protein changes of autophagic-regulated molecules 
in mild fatty liver cows indicated enhanced formation 
and degradation of autophagosomes, suggesting that 
autophagy may be involved in the onset of adaptive 
mechanisms of cows with mild fatty liver.

Under nutrient-deficient conditions, autophagic deg-
radation of cellular constituents can efficiently recycle 
essential nutrients to sustain basic tissue functions 
(Filomeni et al., 2015). Accordingly, energy deficiency 
of mild fatty liver cows may explain the enhanced 
autophagosome formation and degradation. In ad-
dition, serum concentrations of BHB were greater in 
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Figure 1. (A) Hepatic protein abundance of ubiquitinated (Ub) proteins in healthy cows (n = 15) and dairy cows with mild fatty liver (n = 
15). Representative blots are shown. (B) Quantification of hepatic abundance of ubiquitinated proteins. Data were analyzed with paired t-tests 
and expressed as mean ± SEM.
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cows with mild fatty liver than in healthy cows. A 
previous study demonstrated that BHB could activate 
the AMP-activated protein kinase (AMPK) signaling 
pathway in bovine hepatocytes (Deng et al., 2015). 
Importantly, AMPK is an upstream regulator of au-
tophagy and can markedly elevate the formation and 
degradation of autophagosomes (Gwinn et al., 2008). 
Therefore, the enhanced formation and degradation of 
autophagosomes in the liver of cows with mild fatty 
liver might result from increased BHB content. Peroxi-
some proliferator-activated receptor α (PPARα) is a 
master transcription factor that regulates expression 
of β-oxidative genes (Qiu et al., 2008); nevertheless, 
growing evidence reveals a role for activated PPARα in 
promoting autophagy as an adaptive mechanism under 
stress conditions (Kim et al., 2017). In line with the en-
hanced formation and degradation of autophagosomes 
in the liver of cows with mild fatty liver, our previous 
studies showed higher expression of PPARα in mild 
fatty liver cows (Du et al., 2018b). Therefore, our re-
sults combined with those of previous studies revealed 

that upregulated PPARα activities might be associated 
with enhanced autophagosome formation and degrada-
tion. In addition to the effects of energy status, BHB 
content, and PPARα activity on autophagy, at least in 
nonruminants, other factors such as blood insulin level 
and intracellular calcium content have been shown to 
play a role in regulating autophagy (Harris, 2011; Me-
dina and Ballabio, 2015). Accordingly, future studies 
in transition cows should examine the potential multi-
factorial control of this important cellular mechanism.

Impaired autophagy activity can lead to accumula-
tion of toxic aggregates, such as misfolded or damaged 
proteins and mitochondria that can further increase the 
risk of cell death (Ravanan et al., 2017). Some evidence 
indicates that the normal increase in hepatic metabolic 
rate during the transition period (Reynolds et al., 2003) 
causes an increase in these cellular toxic aggregates 
(Bannink et al., 2012; Esposito et al., 2014). In addition 
to cell damage, experiments in human and mouse re-
vealed that blocked autophagy induces oxidative stress 
and endoplasmic reticulum stress, and further exacer-
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Figure 2. (A) Hepatic protein abundance of LC3 and p62 in healthy cows (n = 15) and in dairy cows with mild fatty liver (n = 15). 
Representative blots are shown. (B, C) Quantification of hepatic protein abundance of LC3-II and p62. (D, E) Relative hepatic mRNA abun-
dance of MAP1LC3 and SQSTM1 in healthy cows (n = 15) and in dairy cows with mild fatty liver (n = 15). Data were analyzed with paired 
t-tests and expressed as mean ± SEM. Microtubule-associated protein 1 light chain 3 (LC3)-I, microtubule-associated protein 1 light chain 3 
(LC3)-II, and sequestosome-1 (p62).
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bates hepatic steatosis and injury (Ding et al., 2010; 
Ma et al., 2013; Tanaka et al., 2016). Therefore, the en-
hanced formation and degradation of autophagosomes 
in cows with mild fatty liver indicated that autophagy 
makes an important contribution to maintaining energy 
homeostasis and preventing progression of fatty liver in 
dairy cows.

In conclusion, the hepatic mRNA abundance of 
the autophagosome formation–related molecules MA-
P1LC3, ATG5, and ATG7 was greater, whereas the 
abundance of ubiquitinated proteins and of LC3-II and 
p62 protein were lower in the liver of cows with mild 
fatty liver, suggesting that the formation and degrada-
tion of autophagosomes is enhanced in the liver of cows 
with mild fatty liver. These findings shed light on an 
underappreciated function of autophagy in adaptive 
processes within the liver of dairy cows during the tran-
sition period; this adaptive process ensures the physical 
condition of perinatal dairy cows.
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