
Random Systems

Mojtaba Alaei

November 10, 2013

Content of the course

Random systems

Example: Diffusion

Brownian motion

i

Random numbers in computer

To simulate random processes we need to produce random
numbers. We can not really produce random numbers in compuers
and in fact we produce and use pseudorandom numbers which are
not truely random!

Pseudorandom number generator

A pseudorandom number generator is an algorithm for generating
a sequence of numbers that approximates the properties of random
numbers. The sequence is not truely random in that it is
completely determined by a relatively small set of initial values.

Pseudorandom number generator; an example
Consider the following equation (linear congruential generator):

x ′ = (ax + c)mod m (1)

Where a, c, and m are integer constants and x is an integer
variable.

from pylab import plot, show
N = 100
P a r a m t e r s f o r p s u d o r a n d o m g e n r a t o r :

a = 1664525
c = 1013904223
m = 4294967296
x = 1
results = []

for i in range(N):
x = (a∗x+c)%m
results.append(x)

plot(results,"o")
show()

The numbers are not actually random (By knowing a, c , m
and x you can calculate the next (random) number!!)
It matters what values you choose for the constants a, c , m
By choosing different starting values for x, you can get
different sequences of random numbers.
The initial value is called the seed for the random number
generator; it specifies where the squence will start.

Random numbers in python

In the linear congruential generator (x ′ = (ax + c)mod m) there
are correlations between the values of successive numbers, whereas
true random numbers would be independent.
But these days physicist use a better random number generator
so-called Mersenne twister. In the random pakage in python,
Mersenne twister genrator is provided, which contains the following
useful functions:

random() Gives a random floating−point number uniformly
distributed in the range from zero to one,

including zero but not including one

randrange(n) Gives a random integer from 0 to n−1, inclusive
randrange(n,m) Gives a random integer from m to n, inclusive

randrange(n,m,k) Gives a random integer in the range m to n−1
in steps of k

Random number seeds

Run the following program several times:

from random import randrange , seed

seed(42)

for i in range(4):

print(randrange(10))

What is the role of seed?

Where do you need to use seed?

Random walk

Random walk is a simple model to describe many random
processes.

Random walk in one dimension

Suppose a walker who walks

toward +x direction with a probability p (for example
p = 1/2)

and toward -x dirction with an another probability, q = 1− p
(for example q = 1/2).

His steps have same length, equal to a (si = ±a)

So after N steps, the position of walker is:

xN =
N∑
i=1

si (2)

< xN > and < x2
N >

for a random walk (the steps are independent of each other):

< xN > = <

N∑
i=1

si >=
N∑
i=1

< si >= N < s > (3)

= N(pa− qa) = N(p − q)a

For p = q = 1/2, < xN >= 0.0 .

< x2
N > = <

N∑
i=1

(
N∑
j=1

si sj) > (4)

=
N∑
i=1

N∑
j=1

< si sj >

The terms si sj with i 6= j will be ±1 with equal probability (for
p = q = 1/2). So the terms < si sj > for i 6= j are equal to zero.
Therefore:

< x2
N >=

N∑
i=1

s2
i = N a2 (5)

Simulate random walk

from random import random

x=0

for i in range(N):

p = random()

if p < 0.5:

x=x+1

else:

x=x−1

What is the difference of xN and < xN >?

from random import random
import matplotlib.pyplot as plt
N=200; M=4; x1=0
x=[x1]
for j in range(M):

x1=0
x=[x1]
for i in range(N):

p= random()
if p < 0.5:
x1=x1+1

else:
x1=x1−1

x.append(x1)
plt.plot(x)

plt.show()

What is the difference of xN and < xN >?
from random import random
import matplotlib.pyplot as plt
N=200; M=4; x1=0
x=[x1]
for j in range(M):

x1=0
x=[x1]
for i in range(N):

p= random()
if p < 0.5:
x1=x1+1

else:
x1=x1−1

x.append(x1)
plt.plot(x)

plt.show()

exercise 5, part 1

random walk in one-dimension

Calculate < xN > for arbitrary N steps
Plot < x2

N > vs. N

random walk in two-dimesion

Calculate < rN > for arbitrary N steps (rN = xN + yN)
Plot < r2

N > vs. N

Hint

For two dimensions we can use randrange(4):

for step in range(N):

p = random.randrange(4)

if p == 0:

x += 1

elif p == 1:

y += 1

elif p == 2:

x −= 1
elif p == 3:

y −= 1

polymers

A polymer is a large molecule composed of many repeated
subunits, known as monomers.

random walks and polymers

A random walk is an obvious candidate for modeling flexible
polymers. BUT!

Figure: Appearance of real linear polymer chains as recorded using an
atomic force microscope on a surface, under liquid medium. Chain
contour length for this polymer is 204 nm; thickness is 0.4 nm
(JACS,Roiter, Y.; Minko, S. (2005),downloaded from wikipedia

Self-avoiding walks and polymers

Each link in the polymer chain corresponds to one step in the walk,
and scince the polymer is flexible, each step is independent of the
one immediately befor it. However, for this problem a random walk
ingores an important piece of physics.

Solution

The path followed by our polymer molecule must not be allowed to
intersect itself. Only one segment of the polymer is allowed to
occupy any particular region of space. A random walk that subject
to this constraint is called a a self-avoiding walk, or SAW.

Self-avoiding walks

Self-avoiding walks

The ”true” self-avoiding walk is defined as the statistical problem
of a traveller who steps randomly, but tries to avoid places he has
already visited.

Self-avoiding walks

Self-avoiding walks in one dimension

Self-avoiding walks in one dimension are trivial. There are only two
different self-avoiding walks with fixed step size in 1-D. If the first
move is to the left, every subsequent step is to the left. If the first
move is to the right, the walk continues to the right.

|x | = N (6)

Self-Avoiding Walk in Two Dimensions

In the simple random walk:

< x2
N >∼ N (7)

But for a self-avioding walk:

< x2
N >∼ Nα (8)

Where 1 < α < 2.

Simplistic Self-Avoiding Walk Algorithm

Generating self-avoiding walks is tricky! Consider a
self-avoiding walk on a 2-D square lattice. The walker must
step North, South, East or West with equal probability. At the
same time the walker must avoid previously visited locations.

Unfortunately, these two requirements are incompatible! A
walker who steps with equal probability NSEW cannot avoid
previously visited locations. The first step has 4 allowed
directions, NSEW. Every subsequent step has 3, 2, 1, or 0
allowed directions.

The fundamental problem is to ensure that every SAW chain
in an equilibrium ensemble occurs with the same probability.

Simplistic Self-Avoiding Walk Algorithm

Simplistic Self-Avoiding Walk Algorithm

We can model a self-avoiding random walk in two dimensions by
having the the walker step NSEW with equal probabilities, and
simply discarding failed walks.

Running the codes shows that the algorithm is extremely
inefficient. The fraction of discarded walks increases exponentially
with length N:

Walks Generated

Total Number of Attempts
∼ e−λN (9)

where λ is a positive attrition constant.

exercise 5, part 2

For a salf-avioding walk in two (and three dimension), calculate α

To derive α, you should plot log < r2
N > vs. N, the slope of

the line is α

Because this algorithm is time-consuming, chose the
maximum of N equal to 25 (Nmax = 25) and take the average
over 200 walkers

For fitting the date to a line, you can use numpy.polyfit.
(see http://docs.scipy.org/doc/numpy/reference/generated/numpy.polyfit.html)
or
a softwere such as gnuplot or xmgrace

The Reptation Method

The reptation model of polymer diffusion was developed by Pierre
de Gennes who won the Nobel Prize in 1991 for his work on liquid
crystals and polymers.

Figure: Pierre de Gennes

The Reptation Method

Reptation is the thermal motion of very long linear, entangled
macromolecules in polymer melts or concentrated polymer
solutions. Derived from the word reptile, reptation suggests the
movement of entangled polymer chains as being analogous to
snakes slithering through one another.

Figure:

The Reptation Method

Reptation Algorithm

Assume that we have generated a random walk.

Choose one of the end points at random and delete this point.

Choose one the end points at random.

Add the delete point to the choosen end with a random
direction.

Percolation

