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Electric potential

For regions of space that do not contaion any charges:

∇2V (x , y , z) =
∂2V

∂x2
+
∂2V

∂y2
+
∂2V

∂z2
(1)

For an arbitrary boundary condition we have to use a numerical
method.



Numerical solution of ∇2V = 0 in two dimensions

We divide the space to small segments; ∆x and ∆y . By using
Taylor expantion:

V (x + ∆x , y) = V (x , y) + ∆x
∂V (x , y)

∂x
+

1

2
(∆x)2

∂2V (x , y)

∂x2
(2)

V (x , y + ∆y) = V (x , y) + ∆y
∂V (x , y)

∂y
+

1

2
(∆y)2

∂2V (x , y)

∂y2

V (x −∆x , y) = V (x , y)−∆x
∂V (x , y)

∂x
+

1

2
(∆x)2

∂2V (x , y)

∂x2

V (x , y −∆y) = V (x , y)−∆y
∂V (x , y)

∂y
+

1

2
(∆y)2

∂2V (x , y)

∂y2

Sum of these equations gives the following equation (we suppose

∆x = ∆y and we know that ∂2V (x ,y)
∂x2

+ ∂2V (x ,y)
∂y2 = 0, Laplace’s

equation):

V (x + ∆x , y) +V (x , y + ∆y) +V (x −∆x , y) +V (x , y −∆y) = 4V (x , y)
(3)



relaxtion method

Therefore:

V (x , y) =
1

4
[V (x+∆x , y)+V (x−∆x , y)+V (x , y+∆y)+V (x , y−∆y)]

(4)
And for three-dimensions

V (x , y , z) = 1
6 [V (x + ∆x , y , z) + V (x −∆x , y , z) (5)

+ V (x , y + ∆y , z) + V (x , y −∆y , z)

+ V (x , y , z + ∆z) + V (x , y , z −∆z)]

We fix the values of V (x , y , z) at boundary and in an iterative
process we recalculate V (x , y , z) from above equation until our
result satisfies some convergence criteria.



relaxtion method

Vn(x , y)
update by equation (3)−−−−−−−−−−−−−→ Vn+1(x , y) (6)

Where n index shows the iteration number i.e. V0(x , y) are intial
values for V (x , y) (we set for example V0(x , y) = 0), V1(x , y) are
values which optained from equation (4) by putting V0(x , y) in the
right side of equation, and so on or:

Vn+1(x , y) =
1

4
[Vn(x+∆x , y)+Vn(x−∆x , y)+Vn(x , y+∆y)+Vn(x , y−∆y)]

(7)

Or in more simple way:

Vnew (x , y) = 1
4 [Vold(x + ∆x , y) + Vold(x −∆x , y)

+ Vold(x , y + ∆y) + Vold(x , y −∆y)]

We stop iterations when (convergence criteria):

|Vnew − Vold | < ε (8)

Where ε is a small number(The smaller ε means the more
accuracy).



An example

Figure: A square with boundary conditions at its edges, V1, V2, V3, V4



An example

Figure: Potential inside a square with boundary conditions at its edges:
V1 = 1, V2 = 0, V3 = 0, V4 = 0



An example

Figure: Potential inside a square with boundary conditions at its edges:
V1 = 1, V2 = 0, V3 = 0, V4 = 1



exercise 4, part 1

Suppose a squre with different edge potentails (V1, V2, V3,
V4)

plot a counter plot for potential inside the squre



hint

from numpy import empty, zeros, max

from pylab import imshow, gray, show, colorbar

N = 100 # Grid squares on a side
eps= 1e−5# accuracy
V old = zeros([N+1, N+1], float) # Create arrays to hold potential values
#some part i s missing ?
V new = empty( [N+1,N+1], float)

diff = 1.0

while diff > eps: # Main loop
# Calculate new values of potential
for i in range(N+1):

for j in range(N+1):

# some part i s missing
# Claculate maximum difference from old values
diff = max(abs(V old−V new))
# Swap the two arrays around
V old , V new = V new , V old

imshow(V old) #Make a plot
colorbar()

show()



Solution of the poisson equation

∇2V = − ρ
ε0

(9)

From equation (2) we have:
(we suppose ∆x = ∆y and we know that
∂2V (x ,y)
∂x2

+ ∂2V (x ,y)
∂y2 = − ρ

ε0
, Poissin equation):

V (x+∆x , y)+V (x , y+∆y)+V (x−∆x , y)+V (x , y−∆y) = 4V (x , y)−ρ(x , y)

ε0
(∆x)2

(10)
So

V (x , y) =
1

4
[V (x+∆x , y)+V (x−∆x , y)+V (x , y+∆y)+V (x , y−∆y)]+

(∆x)2

4ε0
ρ(x , y)

(11)



exercise 4, part2

Figure: A square with boundary conditions at its edges, V1 = 0, V2 = 0,
V3 = 0, V4 = 0 and a point charge inside



exercise 4, part2

Suppose a squre with edge potentails, V = 0 and a point
charge (assume q/ε0 = 1 )at the center.

plot a counter plot for potential inside the squre


