Euler and Runge-Kutta Method

Mojtaba Alaei

October 4, 2013

Content of the course

Radioactive Decays

■ Physics problem

$$\frac{dN}{dt} = -\frac{N}{\tau} \tag{1}$$

analytical solution

$$N(t) = N(0)e^{-t/\tau} \tag{2}$$

Numerical solution, Euler method

differential of f(x)

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} \equiv \lim_{\Delta t \to 0} \frac{x(t + \Delta t) - x(t)}{\Delta t} \Longrightarrow \frac{x(t + \Delta t) - x(t)}{\Delta t},$$
(3)

Euler method

$$x(t + \Delta t) \approx x(t) + \frac{\mathrm{d}x(t)}{\mathrm{d}t} \Delta t$$
 (4)

■ Numerical solution of $\frac{dN}{dt} = -\frac{N}{\tau}$:

$$N(t + \Delta t) \approx N(t) - \frac{N(t)}{\tau} \Delta t$$
 (5)

Error in Euler method

■ Taylor expansion:

$$x(t+\Delta t) = x(t) + \frac{\mathrm{d}x(t)}{\mathrm{d}x} \Delta t + \frac{\mathrm{d}^2 x(t)}{\mathrm{d}x^2} \frac{(\Delta t)^2}{2} + \dots + \frac{\mathrm{d}^n x(t)}{\mathrm{d}x^n} \frac{(\Delta t)^n}{n!} + \dots$$

■ Error per step $\propto (\Delta t)^2$. But in the N steps $(\propto (t_{out} - t_{in})/\Delta t)$, the total error $\propto \Delta t$

exercise 1

Write a program to solve $\frac{dN}{dt} = -\frac{N(t)}{\tau}$

- Structure of the program:
 - initialize t_0 , t_{end} , N_0 , τ ... (read from input)
 - Solve $\left(\frac{dN}{dt} = -\frac{N(t)}{\tau}\right)$
 - time steps: $t_{i+1} = t_i + \Delta t$ if $t > t_{end}$: stop
 - In each step: $N(t_{i+1}) = N_{i+1} = N_i N_i/\tau \Delta t$
- plot Numerical Solution for different time step (Δt) and compare with exact solution.
- plot the error for different steps

Runge-Kutta methods

Figure: Euler method

How to improve the Euler method:

- use more terms in Taylor expansion
- use derivative at $x + \Delta t/2$

second-order Runge-Kutta

$$x(t+\Delta t)=x(t+\frac{\Delta t}{2})+\frac{1}{2}\Delta t(\frac{dx}{dt})_{t+\frac{\Delta t}{2}}+\frac{1}{8}(\frac{d^2x}{dt^2})_{t+\Delta t}+O(\Delta t^3)$$

$$x(t) = x(t + \frac{\Delta t}{2}) - \frac{1}{2}\Delta t(\frac{dx}{dt})_{t + \frac{\Delta}{t}} + \frac{1}{8}(\frac{d^2x}{dt^2})_{t + \frac{\Delta t}{2}} + O(\Delta t^3)$$

Subtracting the second expression from the first and rearranging:

$$x(t + \Delta t) = x(t) + \Delta t \left(\frac{dx}{dt}\right)_{t + \frac{\Delta t}{2}} + O(\Delta t^3)$$

$$= x(t) + \Delta t f\left(x\left(t + \frac{\Delta t}{2}\right), t + \frac{1}{2}\right) + O(\Delta t^3)$$
(where $\frac{dx}{dt} = f(x, t)$)

Second-order Runge-Kutta, practical algorithm

- We do not have $x(t + \frac{\Delta}{2})$
- Solution: Using Euler method for it:

$$x(t + \frac{\Delta t}{2}) = x(t) + \frac{1}{2}\Delta t f(x, t)$$
 (8)

- practical algorithm
 - $k_1 = \Delta t f(x, t),$
 - $k_2 = \Delta t f(x + \frac{1}{2}k_1, t + \frac{1}{2}\Delta t),$
 - $x(t+\Delta t)=x(t)+k_2$

Error in Second-order Runge-Kutta

Error $\propto O(\Delta t^3)$, Why?

An example

```
from math import sin
from numpy import arange
from pylab import plot, xlabel, ylabel, show
\# dx/dt = -x^3+\sin(t)
def f(x,t):
    return -x**3 + sin(t)
a = 0.0
b = 10.0
N=200
dt = (b-a)/N
tpoints = arange(a,b,dt)
xpoints = []
x = 0.0
for t in tpoints:
    xpoints.append(x)
    k1 = dt * f(x,t)
    k2 = dt * f(x+0.5*k1. t+0.5*dt)
    x += k2
plot (tpoints, xpoints)
xlabel ("t")
ylabel ("x(t)")
show()
```

The fourth-order runge-kutta method

If we use more higher term $(\Delta t^3, \Delta t^4)$ in Taylor expansions, we can derive the fourth-order runge-kutta method:

$$k_1 = \Delta t f(x, t) \tag{9}$$

$$k_2 = \Delta t f(x + \frac{1}{2}k_1, t + \frac{1}{2}\Delta t)$$
 (10)

$$k_3 = \Delta t f(x + \frac{1}{2}k_2, t + \frac{1}{2}\Delta t)$$
 (11)

$$k_4 = \Delta t f(x + k_3, t + \Delta t)$$
 (12)

$$x(t + \Delta t) = x(t) + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$
 (13)

An example

```
from math import sin
from numpy import arange
from pylab import plot, xlabel, ylabel, show
def f(x,t):
    return - x**3 + sin(t)
a = 0.0
b = 10.0
N = 100
dt = (b-a)/N
tpoints = arange(a,b,dt)
xpoints = []
x = 0.0
for t in tpoints:
    xpoints.append(x)
    k1 = dt*f(x,t)
    k2 = dt*f(x+0.5*k1, t+0.5*dt)
    k3 = dt*f(x+0.5*k2, t+0.5*dt)
    k4 = dt * f(x+k3, t+dt)
    x += (k1+2*k2+2*k3+k4)/6
plot (tpoints, xpoints)
xlabel ("t")
ylabel ("x(t)")
show()
```

Trajectory with air resistance

For a spherical cannonball, the drag force is:

$$F = \frac{1}{2}\pi R^2 \rho C v^2 \tag{14}$$

Where R is the sphere's radius, ρ is the density of air, v is the velocity, amd C is the so-called cofficient of drag.

The equations of motion for the position (x,y) of the cannonball are:

$$a_x = \dot{v_x} = -\frac{\pi R^2 \rho C}{2m} v_x \sqrt{v_x^2 + v_y^2}$$
 (15)

$$a_y = \dot{v_y} = -g - \frac{\pi R^2 \rho C}{2m} v_y \sqrt{v_x^2 + v_y^2}$$
 (16)

Solution with Euler method

$$B_{drag} = \frac{1}{2}\pi R^2 \rho C v^2$$

$$\dot{x} = \frac{dx}{dt} = v_x
\dot{y} = \frac{dy}{dt} = v_y
\dot{v_x} = \frac{dv_x}{dt} = -\frac{B_{\text{drag}}vv_x}{m}
\dot{v_y} = \frac{dv_y}{dt} = -g - \frac{B_{\text{drag}}vv_y}{m}$$

The solution above equations in Euler method is as follows:

$$\begin{array}{rcl} x_{i+1} & = & x_i + v_{x,i} \Delta t \\ y_{i+1} & = & y_i + v_{y,i} \Delta t \\ v_{x,i+1} & = & v_{x,i} - \frac{B_{\mathrm{drag}} v_i v_{x,i}}{m} \Delta t \\ v_{y,i+1} & = & v_{y,i} - g \Delta t - \frac{B_{\mathrm{drag}} v_i v_{y,i}}{m} \Delta t \,, \end{array}$$

Where

$$v_i = \sqrt{v_{x,i}^2 + v_{y,i}^2}$$
.

Exercise 2

Suppose $R = 8cm, m = 1Kg, \rho = 1.22kgkhm^{-3}, C = 0.47$

- plot (x,y) for different θ and v_0 with Euler method
- plot (x,y) for different θ and v_0 with the second and fourth-order runge-kutta methods
- plot (x,y) for a given θ and v_0 with the Euler, the second and fourth-order runge-kutta methods in a same graph
- Compare the total distance traveled by the cannonball when C=0.0 for different methods with the exact value $(2v_0^2 sin(\theta)cos(\theta)/g)$

```
def rk4(x, v, a, dt):
    """ Returns final (position, velocity) tuple after
    time dt has passed.
    x: initial position (number-like object)
    v: initial velocity (number-like object)
    a: acceleration function a(x, v, dt) (must be callable)
    dt: timestep (number)"""
   x1 = x
   v1 = v
    a1 = a(x1, v1, 0)
   x2 = x + 0.5*v1*dt
    v2 = v + 0.5*a1*dt
    a2 = a(x2. v2. dt/2.0)
   x3 = x + 0.5 * v2 * dt
    v3 = v + 0.5*a2*dt
    a3 = a(x3, v3, dt/2.0)
   x4 = x + v3*dt
    v4 = v + a3*dt
    a4 = a(x4, v4, dt)
    xf = x + (dt/6.0)*(v1 + 2*v2 + 2*v3 + v4)
    vf = v + (dt/6.0)*(a1 + 2*a2 + 2*a3 + a4)
    return xf. vf
```