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Content of the course



Radioactive Decays

m Physics problem

m analytical solution



Numerical solution, Euler method

m differential of f(x)
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m Euler method

x(t+ At) =~ x(t) + d)(;(tt)At ) (4)

m Numerical solution o
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Error in Euler method

m Taylor expansion:
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m Error per step o< (At)2. But in the N steps
(o< (tout — tin)/At), the total error oc At



exercise 1

Write a program to solve dN @

m Structure of the program:
m initialize ty, tend, No, 7 ... (read from input)
= Solve (& = @ )

m time steps: ti 1 = t; + At if t > tepq : stop
m In each step: N(tiy1) = Nip1 = N; — N;/TAt

m plot Numerical Solution for different time step (At) and
compare with exact solution.

m plot the error for different steps



Runge-Kutta methods

}error

Figure: Euler method

How to improve the Euler method:
m use more terms in Taylor expansion
m use derivative at x + At/2



second-order Runge-Kutta

u
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m Subtracting the second expression from the first and
rearranging:

x(t+At) = x(t)+ At(%)pr

= x(t) + At f(x(t+

s+ 0(AF) (7)
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(where ‘th( = f(x,t))



Second-order Runge-Kutta, practical algorithm

m We do not have x(t + %)

m Solution: Using Euler method for it:

x(t+%) :x(t)+%At f(x,t) (8)

m practical algorithm
m k= Atf(x,t),
m ko = Atf(x+ Sk, t+ 3At),
B x(t+ At) = x(t) + ke



Error in Second-order Runge-Kutta

Error oc O(At3), Why?



An example

from math import sin
from numpy import arange

from pylab import plot, xlabel,

# dx/dt=—x"3+sin (t)
def f(x,t):
return —xx*x3 + sin(t)

a= 0.0

b= 10.0

N=200

dt= (b—a)/N

tpoints = arange(a,b,dt)
xpoints = []

x = 0.0

for t in tpoints:
xpoints.append(x)
kl = dt* f(x,t)
k2 = dtx f(x40.5%kl,
x 4= k2

plot(tpoints, xpoints)
xlabel ("t")

ylabel ("x(t)")

show ()

ylabel ,

t+0.5xdt)

show




The fourth-order runge-kutta method

If we use more higher term (At3, At4) in Taylor expansions, we
can derive the fourth-order runge-kutta method:
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An example

from math import sin
from numpy import arange
from pylab import plot, xlabel ,ylabel ,show

def f(x,t):
return —x*x*3 + sin(t)
a=20.0
b = 10.0
N = 100

dt = (b—a)/N

tpoints = arange(a,b,dt)
xpoints = []
x = 0.0

for t in tpoints:
xpoints.append(x)

kl = dtxf(x,t)

k2 = dt*f(x+0.5%xkl, t+0.5xdt)
k3 = dtxf(x+0.5%k2, t+0.5%dt)
k4 = dtxf(x+k3, t4+dt)

x 4= (k142xk2+2xk3+k4)/6

plot(tpoints , xpoints)
xlabel ("t")

ylabel ("x(t)")

show ()



Trajectory with air resistance

For a spherical cannonball, the drag force is:
1
F = EﬂRzpCv2 (14)

Where R is the sphere’s radius, p is the density of air, v is the
velocity, amd C is the so-called cofficient of drag.

The equations of motion for the position (x,y) of the cannonball

are:
. TR?pC
ax = vX:fTSvX\/varv}g (15)
) TR?pC
ay = Vy=—8~— m Vyy/ V3+V3 (16)




Solution with Euler method

Bdrag = %WR2/)CV2

X - dt - Vi
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Vy = de g m
The solution above equations in Euler method is as follows:

Xiy1 = X+ vy At
Yirl = Yi+v At
BaragViVx.i
gViVx,i
Vitl = Vyj— ——————At
m
BaragVivy i
gViVy,i
Vyirl = Vi — gAt— ———=At,
Where
v, = v2 + v2



Exercise 2

Suppose R = 8cm, m = 1Kg, p = 1.22kgkhm=3, C = 0.47
m plot (x,y) for different 6 and vy with Euler method

m plot (x,y) for different 6 and vy with the second and
fourth-order runge-kutta methods

m plot (x,y) for a given 6 and vy with the Euler, the second and
fourth-order runge-kutta methods in a same graph

m Compare the total distance traveled by the cannonball when
C = 0.0 for different methods with the exact value
(2vZsin(0)cos(8)/g )



def rk4(x, v, a, dt):
""" Returns final (position, velocity) tuple after
time dt has passed.

x: initial position (number—like object)

v: initial velocity (number—like object)

a: acceleration function a(x,v,dt) (must be callable)
dt: timestep (number)”"”

xl = x

vl = v

al = a(x1, vl, 0)

x2 = x + 0.5xvlxdt

v2 = v + 0.5xalxdt

a2 = a(x2, v2, dt/2.0)

x3 = x + 0.5%v2xdt
v3 = v + 0.5%a2x*dt
a3 a(x3, v3, dt/2.0)

x4 = x + v3xdt

vd = v + a3xdt

a4 = a(x4, v4, dt)

xf = x + (dt/6.0)* (vl + 2xv2 + 2xv3 + v4)
vf = v + (dt/6.0)*(al + 2%a2 + 2xa3 + a4)

return xf, vf
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