
• Objectives:

Feedforward Networks

Multilayer Networks

Backpropagation

Posteriors

Kernels

• Resources:

DHS: Chapter 6

AM: Neural Network Tutorial

NSFC: Introduction to NNs

GH: Short Courses

• URL: .../publications/courses/ece_8443/lectures/current/lecture_17.ppt

NEURAL NETWORKS

1

Overview

• There are many problems for which linear discriminant functions are

insufficient for minimum error.

• Previous methods, such as Support Vector Machines require judicious choice

of a kernel function (though data-driven methods to estimate kernels exist).

• A “brute” approach might be to select a complete basis set such as all

polynomials; such a classifier would require too many parameters to be

determined from a limited number of training samples.

• There is no automatic method for determining the nonlinearities when no

information is provided to the classifier.

• Multilayer Neural Networks attempt to learn the form of the nonlinearity from

the training data.

• These were loosely motivated by attempts to emulate behavior of the human

brain, though the individual computation units (e.g., a node) and training

procedures (e.g., backpropagation) are not intended to replicate properties of a

human brain.

• Learning algorithms are generally gradient-descent approaches to minimizing

error.
2

3

 The perceptron

0

' synapses or synaptic weights

 threshold

iw s

w

 It is a learning machine that learns from the

training vectors via the perceptron algorithm

 The network is called perceptron or neuron

4

• The Perceptron Algorithm

– Assume linearly separable classes, i.e.,

– The case

falls under the above formulation, since

•

•

* *

0

T ww x

0
1*

' , '
*

w
w x

xw

   
    

  

0* * ' ' 0T Tww x w x  

1

2

*: * 0

 * 0

T

T





   

  

w w x x

w x x

5

– Our goal: Compute a solution, i.e., a hyperplane w,

so that

• The steps

– Define a cost function to be minimized

– Choose an algorithm to minimize the cost

function

– The minimum corresponds to a solution

1

2

()0

T



  w x x

6

• There is no single line (hyperplane) that separates

class A from class B. On the contrary, AND and OR

operations are linearly separable problems

7

• The Two-Layer Perceptron

– For the XOR problem, draw two, instead, of one lines

– Then class B is located outside the shaded area and class A

inside. This is a two-phase design.

• Phase 1: Draw two lines (hyperplanes)

Each of them is realized by a perceptron. The outputs of the

perceptrons will be

depending on the position of x.

• Phase 2: Find the position of x w.r.t. both lines, based on the

values of y1, y2.

8

1 2() () 0g gx x

0
(()) 1, 2

1
i iy f g ix

9

• Equivalently: The computations of the first phase

perform a mapping

1st phase 2nd

phasex1 x2 y1 y2

0 0 0(-) 0(-) B(0)

0 1 1(+) 0(-) A(1)

1 0 1(+) 0(-) A(1)

1 1 1(+) 1(+) B(0)

1 2[,]Ty y x y

10

The decision is now performed on the transformed
data.

This can be performed via a second line, which can also
be realized by a perceptron.

() 0g y

y

11

• Computations of the first phase perform a

mapping that transforms the nonlinearly

separable problem to a linearly separable one.

– The architecture

12

A two-layer perceptron solving the

XOR problem.

Definitions
• A single “bias unit” is connected to each unit other than the input units.

• Net activation:

where the subscript i indexes units in the input layer, j in the hidden; wji

denotes the input-to-hidden layer weights at the hidden unit j.

• Each hidden unit emits an output that is a nonlinear function of
its activation: yj = f(netj)

• Even though the individual computational units are simple (e.g., a simple
threshold), a collection of large numbers of simple nonlinear units can result
in a powerful learning machine (similar to the human brain).

• Each output unit similarly computes its net activation based on the hidden
unit signals as:

where the subscript k indexes units in the output layer and nH denotes the
number of hidden units.

• zk will represent the output for systems with more than one output node. An
output unit computes zk = f(netk).

xw
t

j 


d

i

jii

d

i

jjiij wxwwxnet
01

0

yw
t

k 


HH n

j

kjj

n

j

kkjjk wywwynet
01

0

13

Computations

• The hidden unit y1 computes the boundary:

•  0  y1 = +1

x1 + x2 + 0.5 = 0

• < 0  y1 = -1

• The hidden unit y2 computes the boundary:

•  0  y2 = +1

• x1 + x2 -1.5 = 0

• < 0  y2 = -1

• The final output unit emits z1 = +1  y1 = +1 and y2 = +1

zk = y1 AND NOT y2

= (x1 OR x2) AND NOT (x1 AND x2)

= x1 XOR x2

14

General Feedforward Operation
• For c output units:

• Hidden units enable us to express more complicated nonlinear functions and

thus extend the classification.

• The activation function does not have to be a sign function, it is often required

to be continuous and differentiable.

• We can allow the activation in the output layer to be different from the

activation function in the hidden layer or have different activation for each

individual unit.

• We assume for now that all activation functions to be identical.

• Can every decision be implemented by a three-layer network?

• Yes (due to A. Kolmogorov): “Any continuous function from input to output
can be implemented in a three-layer net, given sufficient number of hidden
units nH, proper nonlinearities, and weights.”

for properly chosen functions j and ij

0 0

1 1

() 1,...,
Hn d

k k kj ji i j k

j i

g z f w f w x w w k cx
 

  
      

  
 

 )2];1,0[(Ix)()(n
12

1

 




nIxxg
n

j
iijj 

15

General Feedforward Operation (Cont.)

• Each of the 2n+1 hidden units j takes as input a sum of d nonlinear functions,

one for each input feature xi .

• Each hidden unit emits a nonlinear function j of its total input.

• The output unit emits the sum of the contributions of the hidden units.

• Unfortunately: Kolmogorov’s theorem tells us very little about how to find the

nonlinear functions based on data; this is the central problem in network-

based pattern recognition.

16

17

FIGURE 6.3. Whereas a two-layer network classifier can only implement a linear

decision boundary, given an adequate number of hidden units, three-, four- and

higher-layer networks can implement arbitrary decision boundaries. The decision

regions need not be convex or simply connected.

Backpropagation

• Any function from input to output can be implemented as a three-layer neural

network.

• These results are of greater theoretical interest than practical, since the

construction of such a network requires the nonlinear functions and the

weight values which are unknown!

• Our goal now is to set the interconnection weights based on the training

patterns and the desired outputs.

• In a three-layer network, it is a straightforward matter to understand how the

output, and thus the error, depend on the hidden-to-output layer weights.

• The power of backpropagation is that it enables us to compute an effective

error for each hidden unit, and thus derive a learning rule for the input-to-

hidden weights, this is known as “the credit assignment problem.”

• Networks have two modes of operation:

 Feedforward: consists of presenting a pattern to the input units and passing

(or feeding) the signals through the network in order to get outputs units.

 Learning: Supervised learning consists of presenting an input pattern and

modifying the network parameters (weights) to reduce distances between

the computed output and the desired output.
18

Backpropagation (Cont.)

19

Network Learning

• Let tk be the k-th target (or desired) output and zk be the k-th computed output

with k = 1, …, c and w represents all the weights of the network.

• Training error:

• The backpropagation learning rule is based on gradient descent:

 The weights are initialized with pseudo-random values and are changed in

a direction that will reduce the error:

where  is the learning rate which indicates the relative size of the change

in weights.

 The weight are updated using: w(m +1) = w (m) + w (m).

 Error on the hidden–to-output weights:

where the sensitivity of unit k is defined as:

and describes how the overall error

changes with the activation

of the unit’s net:

22

1

1 1
() ()

2 2

c

k k

k

J t z t z


   w

J

w
w

kj

k
k

kj

k

kkj w

net

w

net

net

J

w

J


















.

k

k
net

J






)(')(. kkk

k

k

kk

k netfzt
net

z

z

J

net

J
















20

Network Learning (Cont.)

• Since netk = wk
t.y:

• Therefore, the weight update (or learning rule) for the hidden-to-output

weights is: wkj = kyj = (tk – zk) f’ (netk)yj

• The error on the input-to-hidden units is:

• The first term is given by:

• We define the sensitivity for a hidden unit:

which demonstrates that “the sensitivity at a hidden unit is simply the sum of

the individual sensitivities at the output units weighted by the hidden-to-

output weights wkj; all multipled by f’(netj).”

• The learning rule for the

input-to-hidden weights is:

j

kj

k y
w

net






ji

j

j

j

jji w

net

net

y

y

J

w

J

















..

  






























 



c

k

c

k
kjkkk

j

k

k

k
kk

c

k j

k
kkk

c

k
k

jj

wnetfzt
y

net

net

z
zt

y

z
ztzt

yy

J

1 1

1

2

1

)(')(.)(

)()(
2

1

1

'()
c

j j kj k

k

f net w

  ijkkjjiji xnetfwxw

j

  


)(' 

21

)(' jnetf

ix

Stochastic Back Propagation

• Starting with a pseudo-random weight configuration, the stochastic

backpropagation algorithm can be written as:

Begin

initialize nH; w, criterion , , m  0

do m  m + 1

xm  randomly chosen pattern

wji  wji + jxi; wkj  wkj + kyj

until ||J(w)|| < 

return w

End

22

23

24

• NNs can learn any (or at least: many) functions

• 50 points sampled (blue dots) from 4 different input functions

• Two layer network, tanh activation, linear output, 3 hidden

units, output hidden units shown dashed

• Output network in red

Stopping Criterion

• One example of a stopping algorithm is to terminate the algorithm when the

change in the criterion function J(w) is smaller than some preset value .

• There are other stopping criteria that lead to better performance than this

one. Most gradient descent approaches can be applied.

• So far, we have considered the error on a single pattern, but we want to

consider an error defined over the entirety of patterns in the training set.

• The total training error is the sum over the errors of

n individual patterns:

• A weight update may reduce the error on the single pattern being presented

but can increase the error on the full training set.

• However, given a large number of such individual updates, the total error

decreases.

1





n

p

pJJ

25

Learning Curves

• Before training starts, the error on the training set is high; through the

learning process, the error becomes smaller.

• The error per pattern depends on the amount of training data and the

expressive power (such as the number of weights) in the network.

• The average error on an independent test set is always higher than on the

training set, and it can decrease as well as increase.

• A validation set is used in order to decide

when to stop training; we do not want to

overfit the network and decrease the

power of the classifier generalization.

“we stop training at a minimum of the error

on the validation set”

26

27

Convergence Issues

• A neural network may converge to a bad

solution

– Train several neural networks from different

initial conditions

• The convergence is slow

– Practical techniques

– Variations of basic backpropagation

algorithms

28

Practical Techniques for Improving BP

• Transfer functions

– Prior information to choose appropriate transfer

functions

– Parameters for the sigmoid function

• Scaling input

– We can standardize each feature component to have

zero mean and the same variance

• Target values

– For pattern recognition applications, use 1 for the

target category and -1 for non-target category

• Training with noise

29

Practical Techniques for Improving BP

• Manufacturing data

– If we have knowledge about the sources of

variation among the inputs, we can

manufacture training data

• For face detection, we can rotate and enlarge /

shrink the training images

• Initializing weights

– If we use standardized data, we want positive

and negative weights as well from a uniform

distribution

• Uniform learning

30

Practical Techniques for Improving BP

• Training protocols

– Epoch corresponds to a single presentation of all
the patterns in the training set

– Stochastic training

• Training samples are chosen randomly from the
set and the weights are updated after each
sample

– Batch training

• All the training samples are presented to the
network before weights are updated

– On-line training

• Each training sample is presented once and only
once

• There is no memory for storing training samples

31

Speeding up Convergence

• Heuristics

– Momentum

– Variable learning rate

– delta-delta rule and delta-bar-delta rule

• Conjugate gradient

• Quickprop

• Second-order methods

– Newton’s method

– Levenberg-Marquardt algorithm

The Cost Function Choice
• The least squares optimal estimate of the posterior

probability

• The cross-entropy cost function

• minimizing the classification error

• deterministic annealing procedure

• …

• Radial basis function networks (RBF)

• Special bases

• Time delayneural networks (TDNN)

• Recurrent networks

• Counterpropagation

• Cascade-Correlation
32

Summary

• Introduced the concept of a feedforward neural network.

• Described the basic computational structure.

• Described how to train this network using backpropagation.

• Discussed stopping criterion.

• Described the problems associated with learning, notably overfitting.

• What we didn’t discuss:

 Many, many forms of neural networks. Three important classes to consider:

 Basis functions:

 Boltzmann machines: a type of simulated annealing stochastic recurrent

neural network.

 Recurrent networks: used extensively in time series analysis.

 Posterior estimation: in the limit of infinite data the outputs approximate a

true a posteriori probability in the least squares sense.

 Alternative training strategies and learning rules.

 


Hn

j
jkjk wz

0

x

33

