
• Objectives:

Feedforward Networks

Multilayer Networks

Backpropagation

Posteriors

Kernels

• Resources:

DHS: Chapter 6

AM: Neural Network Tutorial

NSFC: Introduction to NNs

GH: Short Courses

• URL: .../publications/courses/ece_8443/lectures/current/lecture_17.ppt

NEURAL NETWORKS

1



Overview

• There are many problems for which linear discriminant functions are 

insufficient for minimum error.

• Previous methods, such as Support Vector Machines require judicious choice 

of a kernel function (though data-driven methods to estimate kernels exist).

• A “brute” approach might be to select a complete basis set such as all 

polynomials; such a classifier would require too many parameters to be 

determined from a limited number of training samples.

• There is no automatic method for determining the nonlinearities when no 

information is provided to the classifier.

• Multilayer Neural Networks attempt to learn the form of the nonlinearity from 

the training data.

• These were loosely motivated by attempts to emulate behavior of the human 

brain, though the individual computation units (e.g., a node) and training 

procedures (e.g., backpropagation) are not intended to replicate properties of a 

human brain.

• Learning algorithms are generally gradient-descent approaches to minimizing 

error.
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 The perceptron
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 It is a learning machine that learns from the 

training vectors via the perceptron algorithm

 The network is called perceptron or neuron
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• The Perceptron Algorithm

– Assume linearly separable classes, i.e.,

– The case

falls under the above formulation, since
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– Our goal:  Compute a solution, i.e., a hyperplane w,

so that

• The steps

– Define a cost function to be minimized

– Choose an algorithm to minimize the cost 

function

– The minimum corresponds to a solution
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• There is no single line (hyperplane) that separates

class A from class B. On the contrary, AND and OR

operations are linearly separable problems



7

• The Two-Layer Perceptron

– For the XOR problem, draw two, instead, of one lines



– Then class B is located outside the shaded area and class A

inside. This is a two-phase design.

• Phase 1: Draw two lines (hyperplanes)

Each of them is realized by a perceptron. The outputs of the

perceptrons will be

depending on the position of x.

• Phase 2: Find the position of x w.r.t. both lines, based on the

values of y1, y2.
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• Equivalently:  The computations of the first phase   

perform a mapping

1st phase 2nd

phasex1 x2 y1 y2

0 0 0(-) 0(-) B(0)

0 1 1(+) 0(-) A(1)

1 0 1(+) 0(-) A(1)

1 1 1(+) 1(+) B(0)

1 2[ ,  ]Ty y x y



10

The decision is now performed on the transformed
data.

This can be performed via a second line, which can also 
be realized by a perceptron.
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• Computations of the first phase perform a

mapping that transforms the nonlinearly

separable problem to a linearly separable one.

– The architecture
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A two-layer perceptron solving the 

XOR problem.



Definitions
• A single “bias unit” is connected to each unit other than the input units.

• Net activation:

where the subscript i indexes units in the input layer, j in the hidden; wji

denotes the input-to-hidden layer weights at the hidden unit j.

• Each hidden unit emits an output that is a nonlinear function of 
its activation: yj = f(netj)

• Even though the individual computational units are simple (e.g., a simple 
threshold), a collection of large numbers of simple nonlinear units can result 
in a powerful learning machine (similar to the human brain).

• Each output unit similarly computes its net activation based on the hidden 
unit signals as:

where the subscript k indexes units in the output layer and nH denotes the 
number of hidden units.

• zk will represent the output for systems with more than one output node. An 
output unit computes zk = f(netk).
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Computations

• The hidden unit y1 computes the boundary:

•  0  y1 = +1

x1 + x2 + 0.5 = 0

• < 0  y1 = -1

• The hidden unit y2 computes the boundary:

•  0  y2 = +1

• x1 + x2 -1.5 = 0

• < 0  y2 = -1

• The final output unit emits z1 = +1  y1 = +1 and y2 = +1

zk = y1 AND NOT y2

= (x1 OR x2) AND NOT (x1 AND x2) 

= x1 XOR x2
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General Feedforward Operation
• For c output units:

• Hidden units enable us to express more complicated nonlinear functions and 

thus extend the classification.

• The activation function does not have to be a sign function, it is often required 

to be continuous and differentiable.

• We can allow the activation in the output layer to be different from the 

activation function in the hidden layer or have different activation for each 

individual unit.

• We assume for now that all activation functions to be identical.

• Can every decision be implemented by a three-layer network?

• Yes (due to A. Kolmogorov): “Any continuous function from input to output 
can be implemented in a three-layer net, given sufficient number of hidden 
units nH, proper nonlinearities, and weights.”

for properly chosen functions j and ij
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General Feedforward Operation (Cont.)

• Each of the 2n+1 hidden units j takes as input a sum of d nonlinear functions, 

one for each input feature xi .

• Each hidden unit emits a nonlinear function j of its total input.

• The output unit emits the sum of the contributions of the hidden units.

• Unfortunately: Kolmogorov’s theorem tells us very little about how to find the 

nonlinear functions based on data; this is the central problem in network-

based pattern recognition.
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FIGURE 6.3. Whereas a two-layer network classifier can only implement a linear 

decision boundary, given an adequate number of hidden units, three-, four- and 

higher-layer networks can implement arbitrary decision boundaries. The decision 

regions need not be convex or simply connected. 



Backpropagation

• Any function from input to output can be implemented as a three-layer neural 

network.

• These results are of greater theoretical interest than practical, since the 

construction of such a network requires the nonlinear functions and the 

weight values which are unknown!

• Our goal now is to set the interconnection weights based on the training 

patterns and the desired outputs.

• In a three-layer network, it is a straightforward matter to understand how the 

output, and thus the error, depend on the hidden-to-output layer weights.

• The power of backpropagation is that it enables us to compute an effective 

error for each hidden unit, and thus derive a learning rule for the input-to-

hidden weights, this is known as “the credit assignment problem.”

• Networks have two modes of operation:

 Feedforward: consists of presenting a pattern to the input units and passing 

(or feeding) the signals through the network in order to get outputs units.

 Learning: Supervised learning consists of presenting an input pattern and 

modifying the network parameters (weights) to reduce distances between 

the computed output and the desired output.
18



Backpropagation (Cont.)
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Network Learning

• Let tk be the k-th target (or desired) output and zk be the k-th computed output 

with k = 1, …, c and w represents all the weights of the network.

• Training error:

• The backpropagation learning rule is based on gradient descent:

 The weights are initialized with pseudo-random values and are changed in 

a direction that will reduce the error:

where  is the learning rate which indicates the relative size of the change 

in weights.

 The weight are updated using: w(m +1) = w (m) + w (m).

 Error on the hidden–to-output weights:

where the sensitivity of unit k is defined as:

and describes how the overall error

changes with the activation

of the unit’s net:                         
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Network Learning (Cont.)

• Since netk = wk
t.y:

• Therefore, the weight update (or learning rule) for the hidden-to-output 

weights is: wkj = kyj = (tk – zk) f’ (netk)yj

• The error on the input-to-hidden units is:

• The first term is given by:

• We define the sensitivity for a hidden unit:

which demonstrates that “the sensitivity at a hidden unit is simply the sum of 

the individual sensitivities at the output units weighted by the hidden-to-

output weights wkj; all multipled by f’(netj).”

• The learning rule for the

input-to-hidden weights is:
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Stochastic Back Propagation

• Starting with a pseudo-random weight configuration, the stochastic 

backpropagation algorithm can be written as:

Begin

initialize nH; w, criterion , , m  0

do m  m + 1

xm  randomly chosen pattern

wji  wji + jxi; wkj  wkj + kyj

until ||J(w)|| < 

return w

End
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• NNs can learn any (or at least: many) functions

• 50 points sampled (blue dots) from 4 different input functions

• Two layer network, tanh activation, linear output, 3 hidden 

units, output hidden units shown dashed

• Output network in red



Stopping Criterion

• One example of a stopping algorithm is to terminate the algorithm when the 

change in the criterion function J(w) is smaller than some preset value .

• There are other stopping criteria that lead to better performance than this 

one. Most gradient descent approaches can be applied.

• So far, we have considered the error on a single pattern, but we want to 

consider an error defined over the entirety of patterns in the training set.

• The total training error is the sum over the errors of

n individual patterns:

• A weight update may reduce the error on the single pattern being presented 

but can increase the error on the full training set.

• However, given a large number of such individual updates, the total error 

decreases.
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Learning Curves

• Before training starts, the error on the training set is high; through the 

learning process, the error becomes smaller.

• The error per pattern depends on the amount of training data and the 

expressive power (such as the number of weights) in the network.

• The average error on an independent test set is always higher than on the 

training set, and it can decrease as well as increase.

• A validation set is used in order to decide

when to stop training; we do not want to

overfit the network and decrease the 

power of the classifier generalization.

“we stop training at a minimum of the error

on the validation set”

26
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Convergence Issues

• A neural network may converge to a bad 

solution

– Train several neural networks from different 

initial conditions

• The convergence is slow

– Practical techniques

– Variations of basic backpropagation 

algorithms
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Practical Techniques for Improving BP

• Transfer functions

– Prior information to choose appropriate transfer 

functions

– Parameters for the sigmoid function

• Scaling input

– We can standardize each feature component to have 

zero mean and the same variance

• Target values

– For pattern recognition applications, use 1 for the 

target category and -1 for non-target category

• Training with noise
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Practical Techniques for Improving BP

• Manufacturing data

– If we have knowledge about the sources of 

variation among the inputs, we can 

manufacture training data

• For face detection, we can rotate and enlarge / 

shrink the training images

• Initializing weights

– If we use standardized data, we want positive 

and negative weights as well from a uniform 

distribution

• Uniform learning



30

Practical Techniques for Improving BP

• Training protocols

– Epoch corresponds to a single presentation of all 
the patterns in the training set

– Stochastic training

• Training samples are chosen randomly from the 
set and the weights are updated after each 
sample

– Batch training

• All the training samples are presented to the 
network before weights are updated

– On-line training

• Each training sample is presented once and only 
once

• There is no memory for storing training samples



31

Speeding up Convergence

• Heuristics

– Momentum

– Variable learning rate

– delta-delta rule and delta-bar-delta rule 

• Conjugate gradient

• Quickprop

• Second-order methods

– Newton’s method

– Levenberg-Marquardt algorithm



The Cost Function Choice
• The least squares optimal estimate of the posterior 

probability

• The cross-entropy cost function

• minimizing the classification error

• deterministic annealing procedure

• …

• Radial basis function networks (RBF)

• Special bases

• Time delayneural networks (TDNN)

• Recurrent networks

• Counterpropagation

• Cascade-Correlation
32



Summary

• Introduced the concept of a feedforward neural network.

• Described the basic computational structure.

• Described how to train this network using backpropagation.

• Discussed stopping criterion.

• Described the problems associated with learning, notably overfitting.

• What we didn’t discuss:

 Many, many forms of neural networks. Three important classes to consider:

 Basis functions: 

 Boltzmann machines: a type of simulated annealing stochastic recurrent 

neural network.

 Recurrent networks: used extensively in time series analysis.

 Posterior estimation: in the limit of infinite data the outputs approximate a 

true a posteriori probability in the least squares sense.

 Alternative training strategies and learning rules.
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