
Chapter 5:

Linear Discriminant Functions

• Introduction

• Linear Discriminant Functions and 

Decisions Surfaces

• Generalized Linear Discriminant 

Functions

• Minimum Squared Error Procedures

• Support Vector Machines
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• Introduction

– In chapter 3, the underlying probability densities 

were known (or given)

– The training sample was used to estimate the 

parameters of these probability densities (ML, 

MAP estimations)

– In this chapter, we only know the proper forms 

for the discriminant functions: similar to non-

parametric techniques

– They may not be optimal, but they are very 

simple to use

– They provide us with linear classifiers



• The problem of finding a linear discriminant function 

will be formulated as a problem of minimizing a 

criterion function.

– sample risk, or training error; the average loss 

incurred in classifying training the set of training 

samples.

• It is difficult to derive the minimum-risk linear discriminant 

anyway, and for that reason we investigate several related 

criterion functions that are analytically more tractable.
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Discriminant Approach

• Classification is viewed as “learning good 

decision boundaries” that separate the 

examples belonging to different classes in 

a data set.
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Discriminant function estimation

• Specify a parametric form of the decision 

boundary (e.g., linear or quadratic) .

• Find the “best” decision boundary of the 

specified form using a set of training examples.  

• This is done by minimizing a criterion function

– e.g., “training error” (or “sample risk”)
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• Linear discriminant functions and 
decisions surfaces

The Two-Category Case

– Definition

A discriminant function that is a linear combination 
of the components of x can be written as

g(x) = wtx + w0 (1)

where w is the weight vector and w0 the bias

– A two-category classifier with a discriminant 
function of the form (1) uses the following rule:

Decide 1 if g(x) > 0 and 2 if g(x) < 0

 Decide 1 if wtx > − w0 and 2 otherwise

If g(x) = 0  x is assigned to either class
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Figure 5.1: A simple linear classifier having d input units, each

corresponding to the values of the components of an input

vector. Each input feature value xi is multiplied by its

corresponding weight wi; the output unit sums all these

products and emits a +1 if wtx + w0 > 0 or a −1 otherwise.
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• The equation g(x) = 0 defines the decision surface 

that separates points assigned to the category 1 from 

points assigned to the category 2

• When g(x) is linear, the decision surface is a 

hyperplane

• Algebraic measure of the distance from x to the 

hyperplane (interesting result!)

• If x1 and x2 are both on the decision surface, then

w is normal to any vector lying in the hyperplane.
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Figure 5.2: The linear decision boundary H, where g(x)=wtx+w0, 

separates the feature space into two half-spaces R1

(where g(x) > 0) and R2 (where g(x) < 0).

w0 determines the distance of the hyperplane from the origin
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– In conclusion, a linear discriminant function divides the 

feature space by a hyperplane decision surface

– The orientation of the surface is determined by the normal 

vector w and the location of the surface is determined by the 

bias
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The multi-category case

• Reduce the problem to c − 1 two-class; 

separates points assigned to ωi from those not 

assigned to ωi.

• Use c(c − 1)/2 linear discriminants, one for 

every pair of classes.

– both can lead to regions in which the classification 

is undefined.

• Defining c linear discriminant functions
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Figure 5.3: Linear 

decision boundaries for a 

four-class problem. The 

top figure shows ωi /not

ωi dichotomies while the 

bottom figure shows ωi 

/ωj dichotomies. The 

pink regions have 

ambiguous  category 

assignments.
No ∆H12H23H24

∆H24H13H34

∆H34H12H23

□H14H24H34H12
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• The multi-category case

– We define c linear discriminant functions

and assign x to i if gi(x) > gj(x)  j  i; in 

case of ties, the classification is undefined

– The classifier is a “linear machine”.

– A linear machine divides the feature space into 

c decision regions, with gi(x) being the largest 

discriminant if x is in the region Ri

0( )         1,...,t

i i ig w i c  x w x
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- For a two contiguous regions Ri and Rj; the 

boundary that separates them is a portion of 

hyperplane Hij defined by:

gi(x) = gj(x)

 (wi – wj)
tx + (wi0 – wj0) = 0

wi – wj is normal to Hij and
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Figure 5.4: Decision boundaries produced by a linear 
machine for a three-class problem and a five-class problem.
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• It is easy to show that the decision regions for a 

linear machine are convex, this restriction limits the 

flexibility and accuracy of the classifier.

• In particular, for good performance every decision 

region should be singly connected, and this tends to 

make the linear machine most suitable for problems 

for which the conditional densities p(x|ωi) are 

unimodal.
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• Generalized Linear Discriminant Functions

Decision boundaries which separate between 

classes may not always be linear

– The complexity of the boundaries may 

sometimes request the use of highly non-linear 

surfaces

– A popular approach to generalize the concept of 

linear decision functions is to consider a 

generalized decision function as:

g(x) = w1f1(x) + w2f2(x) + … + wNfN(x) + wN+1 (1)

where fi(x), 1  i  N are scalar functions of the 

pattern x,  x IRn
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• Introducing fN+1(x) = 1 we get:

• This latter representation of g(x) implies that any 

decision function defined by equation (1) can be treated 

as linear in the (N + 1) dimensional space (N+ 1 > n)

• g(x) maintains its non-linearity characteristics in IRn

• Quadratic decision functions for a 2-dimensional feature 

space
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• For patterns x IRn, the most general quadratic decision 

function is given by:

The number of terms at the right-hand side is:

This is the total number of weights which are the free 

parameters of the problem

– If for example n = 3, the vector     is 10-dimensional

– If for example n = 10, the vector     is 65-dimensional
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• In the case of polynomial decision functions of 

order m, a typical fi(x) is given by: 

– It is a polynomial with a degree between 0 and m. To 

avoid repetitions, we request i1  i2  … im

•

(where g0(x) = wn+1) is the most general 

polynomial decision function of order m
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Example 1: Let n = 3 and m = 2 then:

Example 2: Let n = 2 and m = 3 then:
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• The commonly used quadratic decision function can 
be represented as the general n-dimensional quadratic 
surface:

g(x) = xTAx + xTb +c

where the matrix A = (aij), the vector 

b = (b1, b2, …, bn)
T and c, depends on the weights    

wii, wij, wi of equation (2)

• If A is positive definite then the decision function is a 
hyperellipsoid with axes in the directions of the 
eigenvectors of A

– In particular: if A = In (Identity), the decision function 
is simply the n-dimensional hypersphere

– If A is negative definite, the decision function describes 
a hyperhyperboloid

– In conclusion: it is only the matrix A which determines 
the shape and characteristics of the decision function
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Exercise: Consider a 3 dimensional space and cubic 

polynomial decision functions

1. How many terms are needed to represent a decision function if only cubic 

and linear functions are assumed?

2. Present the general 4th order polynomial decision function for a 2 

dimensional pattern space

3. Let IR3 be the original pattern space and let the decision function 

associated with the pattern classes 1 and 2 be:

for which g(x) > 0 if x  1 and g(x) < 0 if x  2

a) Rewrite g(x) as g(x) = xTAx + xTb + c

b) Determine the class of each of the following pattern vectors:

(1,1,1), (1,10,0), (0,1/2,0)

1242)( 2132

2

3

2

1  xxxxxxg x
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• Positive Definite Matrices

1. A square matrix A is positive definite if xTAx>0 

for all nonzero column vectors x. 

2. It is negative definite if xTAx< 0 for all nonzero x. 

3. It is positive semi-definite if xTAx  0.

4. And negative semi-definite if xTAx  0 for all x. 

These definitions are hard to check directly and 

you might as well forget them for all practical 

purposes.
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More useful in practice are the following properties, 

which hold when the matrix A is symmetric and 

which are easier to check.

The i-th principal minor of A is the matrix Ai formed 

by the first i rows and columns of A. So, the first 

principal minor of A is the matrix Ai = (a11), the 

second principal minor is the matrix:

on. so and ,
a  

a  

2221

1211

2 









a

a
A
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– The matrix A is positive definite if all its principal 

minors A1, A2, …, An have strictly positive 

determinants

– If these determinants are non-zero and alternate in 

signs, starting with det(A1)<0, then the matrix A is 

negative definite

– If the determinants are all non-negative, then the 

matrix is positive semi-definite

– If the determinant alternate in signs, starting with 

det(A1)0, then the matrix is negative semi-definite
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To fix ideas, consider a 2×2 symmetric matrix:

 It is positive definite if:
a) det(A1) = a11 > 0

b) det(A2) = a11a22 – a12a12 > 0

 It is negative definite if:
a) det(A1) = a11 < 0 

b) det(A2) = a11a22 – a12a12 > 0

 It is positive semi-definite if:
a) det(A1) = a11  0

b) det(A2) = a11a22 – a12a12  0

 And it is negative semi-definite if:
a) det(A1) = a11  0

b) det(A2) = a11a22 – a12a12  0.

.
a  

a  

2221

1211











a

a
A
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Exercise 2:

Let  

1. Compute the decision boundary assigned to the matrix 
A (g(x) = xTAx + xTb + c) in the case where 
bT = (1 , 2) and c = - 3

2. Solve det(A-I) = 0 and find the shape and the 
characteristics of the decision boundary separating 
two classes  1 and 2

3. Classify the following points:
 xT = (0 , - 1)

 xT = (1 , 1)











4  1

1  2
A
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Solution of Exercise 2:

1.

2.

This latter equation is a straight line colinear to the 
vector:
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This latter equation is a straight line colinear to the vector:

The ellipsis decision boundary has two axes, which are

respectively colinear to the vectors v1 and v2

3. x = (0 , -1) T  g(0 , -1) = -1 < 0  x  2

x = (1 , 1) T  g(1 , 1) = 8 > 0  x  1

T)21, 1(2 v
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Generalized linear discriminant

or

Let the quadratic discriminant function be g(x) = a1 + a2x + a3x
2 

so that the three-dimensional vector y is given by

Although the decision regions in y-space are convex, this is by no means 

the case in x-space. More generally speaking, even with relatively simple 

functions yi(x), decision surfaces induced in an x-space can be fairly 

complex (Fig. 5.6).

See next Fig
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Figure 5.5: The mapping y = (1, x, x2)t  takes a line and transforms it to a 

parabola in three dimensions. A plane splits the resulting y space into 

regions corresponding to two categories, and this in turn gives a non-simply 

connected decision region in the one-dimensional x space.

Error in figure:

Plane should pass

through origin 
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Figure 5.6: The two-dimensional input space x is

mapped through a polynomial function f to y. Here the

mapping is y1 = x1, y2 = x2 and y3 x1x2. A linear

discriminant in this transformed space is a hyperplane,

which cuts the surface. Points to the positive side of the

hyperplane correspond to category ω1, and those

beneath it ω2. Here, in terms of the x space, R1 is a not

simply connected.

Ĥ
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In the particular case of the linear discriminant function

where we set x0 = 1

and y is sometimes called an augmented feature vector. 

Likewise, an augmented weight vector can be written as:
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The addition of a constant component to x preserves

all distance relationships among samples. The

resulting y vectors all lie in a d-dimensional subspace,

which is the x-space itself. The hyperplane decision

surface defined by aty = 0 passes through the origin

in y-space, even though the corresponding hyperplane

H can be in any position in x-space.

The distance from y to is given by |aty|/||a||, or

|g(x)|/||a||. Since ||a|| > ||w||, this distance is less than,

or at most equal to the distance from x to H.

Ĥ

Ĥ
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Figure 5.7: A three-dimensional augmented feature space y and augmented 

weight vector a (at the origin). The set of points for which aty = 0 is a plane 

(or more generally, a hyperplane) perpendicular to a and passing through the 

origin of y space, as indicated by the red disk. Such a plane need not pass 

through the origin of the two-dimensional x-space at the top, of course, as 

shown by the dashed line. Thus there exists an augmented weight vector a

that will lead to any straight decision line in x-space.



The Two-Category Linearly-Separable Case

• Suppose now that we have a set of n samples y1, ..., 

yn, some labeled ω1 and some labeled ω2. We want to 

use these samples to determine the weights a in a 

linear discriminant function g(x) = aty.

• If there exists a solution (weight vector) for which the 

probability of error is very low, the samples are said 

to be linearly separable.

• A sample yi is classified correctly if atyi> 0 and yi is 

labelled ω1 or if atyi < 0 separable and yi is labeled 

ω2.

37



• This suggests a “normalization”, the replacement of 

all samples labelled ω2 by their negatives. With this 

“normalization” we can forget the labels and look for 

a weight vector a such that atyi > 0 for all of the 

samples. Such a weight vector is called a separating 

vector or more generally a solution vector.

• The equation atyi = 0 defines a hyperplane through 

the origin of weight space having yi as a normal 

vector.

• The solution vector — if it exists — must be on the 

positive side of every hyperplane.

38
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Figure 5.8: Four training samples (black for ω1, red for ω2) and

the solution region in feature space. The figure on the left shows

the raw data; the solution vectors leads to a plane that separates

the patterns from the two categories. In the figure on the right,

the red points have been “normalized” — i.e., changed in sign.

Now the solution vector leads to a plane that places all

“normalized” points on the same side.

Raw Data 

Normalized Data:

red points changed in sign 



• If we seek the minimum-length weight vector 

satisfying atyi ≥ b for all i, then b which is a positive 

constant called the margin.

40



Gradient Descent Procedures
• To find solution to set of inequalities atyi > 0, define a 

criterion function J(a) that is minimized if a is a 

solution vector…We will define such a function later.

• Basic gradient descent is very simple. We start with 

some arbitrarily chosen weight vector a(1) and 

compute the gradient vector               The next value 

a(2) is obtained by moving some distance from a(1) 

in the direction of steepest descent, i.e., along the 

negative of the gradient.

where η is a positive scale factor or learning rate that 

sets the step size.
41

 J (1) . a
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We now consider a principled method for setting the 

learning rate. Suppose that the criterion function can 

be well approximated by the second-order expansion 

around a value a(k) as
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Taylor Series Expansion
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Vector Case
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Matrix Form
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• where H is the Hessian matrix of second partial 

derivatives ∂2J/∂ai∂aj evaluated at a(k).

• Substituting 

– J(a(k + 1)) can be minimized by the choice (derivative vs. η(k)) 

• An alternative approach, take the gradient of the 

second-order approximation and set it equal to zero: It 

is Newton’s algorithm . (ref:  ANN Ch 9 lecture notes)

46

optimum learning rate

Taylor series 

expansion

../../database11/transmaster/Ch09-PerformanceOptimization.ppt
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Figure 5.10: The sequence of weight

vectors given by a simple gradient descent

method (red) and by Newton’s (second

order) algorithm (black). Newton’s method

typically leads to greater improvement per

step, even when using optimal learning

rates for both methods. However the added

computational burden of inverting the

Hessian matrix used in Newton’s method

is not always justified, and simple descent

may suffice.
nnd9nm, nnd9sd

../../../../MATLAB7/bin/matlab.bat


Minimizing the Perceptron Criterion 

Function

• Criterion function for solving the linear inequalities

atyi > 0. The most obvious choice is to let J(a; y1, ...,

yn) be the number of samples misclassified by a.

However, because this function is piecewise constant,

it is obviously a poor candidate for a gradient search.

A better choice is the Perceptron criterion function

where Y(a) is the set of samples misclassified by a.

Jp(a) is proportional to the sum of the distances from the 

misclassified samples to the decision boundary. 48
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separable 
Squared Error with margin
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FIGURE 5.11. Four learning criteria as a function of

weights in a linear classifier. At the upper left is the

total number of patterns misclassified, which is

piecewise constant and hence unacceptable for

gradient descent procedures. At the upper right is the

Perceptron criterion, which is piecewise linear and

acceptable for gradient descent. The lower left is

squared error, which has nice analytic properties and is

useful even when the patterns are not linearly

separable. The lower right is the square error with

margin. A designer may adjust the margin b in order to

force the solution vector to lie toward the middle of

the b=0 solution region in hopes of improving

generalization of the resulting classifier.



51

We use the term “batch” training to refer to the fact 

that (in general) a large group of samples is used when 

computing each weight update.

consider all

examples

misclassified



Perceptron rule (cont’d)

• Move the hyperplane so that training 

samples are on its positive side.

52
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Figure 5.12: The weight vector begins at 0, and the algorithm sequentially adds to 

it vectors equal to the “normalized” misclassified patterns themselves. In the 

example shown, this sequence is, y1 + y2 +y3, y3, y1, y3, at which time the vector  

lies in the solution region and iteration terminates. Note that the second update (by 

y3) takes the candidate vector farther from the solution region than after the first 

update (In an alternate, batch method, all the misclassified points are added at 

each iteration step leading to a smoother trajectory in weight space.)

η(k)=1

a(1)=0



Convergence of Single-Sample 

Correction (simpler than batch)

54

yk is one of the n samples y1, ..., yn, and where each yk is misclassified.

consider one

example at a

time

η(k)=1
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Theorem 5.1 (Perceptron Convergence) If training

samples are linearly separable then the sequence of

weight vectors given by Algorithm 4 will terminate at a

solution vector.

Proof?  p230

Some Direct Generalizations

Correction whenever at(k)yk fails to exceed a margin b

Upadte:

Now at(k)yk≤b for all k.
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It can be shown that if the samples are linearly separable and if

then a(k) converges to a solution vector a satisfying atyi > b for all i

-

>b      

&
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From a practical viewpoint, we want to make wise

choice of  b and η(k)

Another variant of interest is our original gradient 

descent algorithm for Jp,

the set of training samples 

misclassified by a(k).
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Some Direct Generalizations: Winnow 

Algorithm 

A close descendant of the Perceptron algorithm is the

Winnow algorithm, which has applicability to

separable training data. The key difference is that

while the weight vector returned by the Perceptron

algorithm has components ai (i = 0, ..., d), in Winnow

they are scaled according to 2sinh[ai]. In one version,

the balanced Winnow algorithm, there are separate

“positive” and “negative” weight vectors, a+ and a−,

each associated with one of the two categories to be

learned.

Skip



Advantages: 

Convergence is faster than in a Perceptron because of proper 

setting of learning rate.

Each constituent value does not overshoot its final value.

Benefit is pronounced when there are a large number of 

irrelevant or redundant features learnt.

60
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Relaxation Procedures

The criterion function Jp is by no means the only 

function we can construct that is minimized when a is 

a solution vector. A close but distinct relative is

Like Jp, Jq focuses attention on the misclassified samples.

Its chief difference is that its gradient is continuous, 

whereas the gradient of Jp is not. Thus, Jq presents a 

smoother surface to search (Fig. 5.11). 

the set of training samples misclassified by a.
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Unfortunately, Jq is so smooth near the boundary of the

solution region that the sequence of weight vectors can

converge to a point on the boundary. It is particularly

embarrassing to spend some time following the

gradient merely to reach the boundary point a = 0.

Another problem with Jq is that its value can be

dominated by the longest sample vectors. Both of these

problems are avoided by the criterion function

the set of training samples for which aty≤b.
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The single-sample 

correction rule (35)



64

is the distance from a(k) to the hyperplane atyk = b 

If η = 1, a(k) is moved exactly to the hyperplane, so that the 

“tension” created by the inequality at(k)yk ≤ b is “relaxed” (Fig. 

5.14).

or atyk >b for all yk
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Figure 5.14: In each step of a basic relaxation algorithm, the 

weight vector is moved a proportion η of the way to wards the 

hyperplane defined by atyk = b.

From (35)

If η < 1, then at(k+1)yk <b underrelaxation

If 1<η < 2, then at(k+1)yk >b overrelaxation



66

Figure 5.15: At the left, under relaxation (η < 1) leads to 

needlessly slow descent, or even failure to converge. Over-

relaxation (1 < η < 2, shown in the right) describes 

overshooting; nevertheless convergence will ultimately be 

achieved.



Nonseparable Behavior

• The Perceptron and relaxation procedures give us a 

number of simple methods for finding a separating 

vector when the samples are linearly separable. All of 

these methods are called error-correcting procedures, 

because they call for a modification error correcting 

procedure of the weight vector when and only when 

an error is encountered.

• When design sets are large, points are most likely not 

linearly separable!
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• How does error correction procedures behave 

when points are not linearly separable?

– Corrections will never cease in an error correction 

procedure

– Infinite sequence of weight vectors

• Weight vectors are bounded

– Empirical rule based on weight vector fluctuating 

near a terminal value

– Averaging weight vectors can reduce risk of 

obtaining a bad solution
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Minimum Squared Error 

Procedures

• The criterion functions we have considered thus far 

have focused their attention on the misclassified 

samples. We shall now consider a criterion function 

that involves all of the samples.

• Where previously we have sought a weight vector a

making all of the inner products atyi positive, now we 

shall try to make atyi = bi, where the bi are some 

arbitrarily specified positive constants.

• Let Y be the n-by- matrix (    = d + 1) whose ith 

row is the vector yi
t, and let b be the column vector   

b = (b1, ..., bn)
t. 69

d̂ d̂
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If Y were nonsingular, we could write a = Y−1b, however, Y is

rectangular. If we define the error vector e by e = Ya − b, then

one approach is to try to minimize the squared length of the

error vector.

Weight vector 

to be determined
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Equating to zero

Y † is called the pseudoinverse of Y.

Note also that Y†Y = I, but YY† ≠ I  in general. However, a 

minimum-squared-error (MSE) solution always exists. In 

particular, if Y† is defined more generally by

The MSE solution depends on the margin vector b.

Closed form solution

MSE Solution based on Pseudoinverse

note: n > d+1
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Example of a linear classifier by matrix pseudoinverse

Two classes; ω1: (1, 2)t and (2, 0)t, and ω2: (3, 1)t and (2, 3)
t

b = (1, 1, 1, 1)t.



Properties of MSE Procedure

• Related to Fisher’s Linear Discriminant

• Asymptotic approximation to Bayes 

discriminant function

• Can be formulated as a gradient descent 

procedure
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MSE Relationship to Fisher’s

Linear Discriminant
• Show that with proper choice of the vector b the MSE 

discriminant function aty is directly related to Fisher’s linear 

discriminant

• Assume first n1 samples are labelled ω1 and second n2 samples 

are labelled ω2

74

w
b

-

a

This special choice of b

links the MSE solution

to Fisher’s Linear

Discriminant



MSE and Fisher’s Linear Discriminant

• Define sample means mi and pooled sample scatter 

matrix SW

and plug into MSE formulation yields

where α is a scalar which is identical to the solution to 

the Fisher’s linear discriminant except for a scale factor

• Decision rule: Decide ω1 if wt(x-m)>0; otherwise 

decide ω2
75
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Proof:
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Since the vector (m1 −m2)(m1 −m2)
tw is in the 

direction of m1 − m2 for any value of w, we can write

where α is some scalar



MSE Relationship to Bayes

• If b=1n MSE approaches a minimum squared 

error approximation to Bayes discriminant 

function

g0(x) = P(ω1|x) - P(ω2|x)

in the limit as number of samples approaches 

infinity.
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MSE Approximation to Bayes

• If b=1n MSE solution approaches a minimum mean 
squared approximation to Bayes discriminant function

79

Class conditional densities

Posteriors

Bayes discriminant function

MSE solution (best approximation in region of data points)

However MSE does 
not necessarily 
minimize 
probability of error



80



81g0(x) = P(ω1|x) − P(ω2|x)



MSE Solution using Gradient Descent

• Criterion function Js(a) = ||Ya-b||2 could be 

minimized by gradient descent

• Advantage over pseudo-inverse:

– Problem when YtY is singular

– Avoids need for working with large matrices

– Computation involved is a feedback scheme that 

copes with round off or truncation
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The Widrow-Hoff Procedure

83

the obvious update rule is

Can be reduced for storage requirement to the rule 

where samples are considered sequentially:

-
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the Widrow-Hoff or LMS rule (Least-Mean-Squared)



85

Figure 5.17: The LMS algorithm need not converge to

a separating hyperplane, even if one exists. Since the

LMS solution minimizes the sum of the squares of the

distances of the training points to the hyperplane, for

this example the plane is rotated clockwise compared to

a separating hyperplane.



The Ho-Kashyap Procedures

• The Perceptron and relaxation procedures find 

separating vectors if the samples are linearly 

separable, but do not converge on nonseparable 

problems.

• If the margin vector b is chosen arbitrarily, all we can 

say is that the MSE procedures minimize ||Ya − b||2. 

Now if the training samples happen to be linearly 

separable, then there exists an and a     such that

where by     > 0, we mean that every component of    

is positive.
86

â b̂
0ˆˆ  baY

b̂b̂
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We shall now see how the MSE procedure can be modified to

obtain both a separating vector a and a margin vector b.

Both a and b in the criterion function Js(a, b) = ||Ya − b||2 are

allowed to vary (subject to the constraint b > 0), then the

minimum value of Js is zero, and the a that achieves that

minimum is a separating vector.

The gradient of Js with respect to a is given by

Js = 2Yt(Ya − b), 

and the gradient of Js with respect to b is given by

Js = −2(Ya − b).

For any value of b, we can always take a = Y†b, thereby

obtaining Js = 0 and minimizing Js with respect to a in one

step.

a

b

a
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We must avoid a descent procedure that converges to b = 0. We

start with b > 0 and to refuse to reduce any of its components.

We can do this and still try to follow the negative gradient if we

first set all positive components of Js to zero.

Thus, if we let |v| denote the vector whose components are the 

magnitudes of the corresponding components of v, we are led to

consider an update rule for the margin of the form

b(k + 1) = b(k) − (η/2)[ Js − | Js |].

Ho-Kashyap rule for minimizing Js(a, b):

b(1) > 0 but otherwise arbitrary

b(k + 1) = b(k) + 2η(k)e+(k),

Where e(k) is the error vector    e(k) = Ya(k) − b(k),

e+(k) is the positive part of the error vector 

e+(k)=(1/2)(e(k)+|e(k)|) and   a(k) = Y†b(k), k= 1, 2, …

b

b b
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The Ho-Kashyap algorithm provides us with a separating

vector in the separable case, and with evidence of

nonseparability in the nonseparable case. However, there is

no bound on the number of steps needed to disclose

nonseparability.

b←b+2η(k)e+
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Some Related Procedures

If we write Y† = (YtY)−1Yt and make use of the fact 

that Yte(k) = 0, we can modify the Ho-Kashyap rule as 

follows

e(k) = Ya(k) − b(k).

This then gives the algorithm for fixed learning rate:
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This algorithm differs from the Perceptron and relaxation 

algorithms for solving linear inequalities in at least three ways: 

(1) it varies both the weight vector a and the margin vector b, 

(2) it provides evidence of nonseparability, but 

(3) it requires the computation of the pseudoinverse of Y.



Linear Programming Algorithms*

• The Perceptron, relaxation and Ho-Kashyap 

procedures are basically gradient descent procedures 

for solving simultaneous linear inequalities. 

• Linear programming techniques are procedures for 

maximizing or minimizing linear functions subject to 

linear equality or inequality constraints.

• Find a vector u = (u1, ..., um)t that minimizes the 

linear (scalar) objective function  z = αtu subject to 

the constraint Au ≥ β, where α is an m-by-1 cost 

vector, β is an l-by-1 vector, and A is an l-by-m

matrix. 92



• The simplex algorithm is the classical iterative 

procedure for solving this problem. For technical 

reasons, it requires the imposition of one more 

constraint, viz., u ≥ 0.
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Simplex algorithm:

Surfaces of constant z are 

shown in gray While constraints 

are shown in red. Simplex finds 

the extremum of z



• If we think of u as being the weight vector a, 

this constraint is unacceptable.

• We write a≡a+-a- where 

• Suppose that we have a set of n samples 

y1,...,yn and we want a weight vector a that 

satisfies atyi ≥ bi > 0 for all i.

• One approach is to introduce what is called an 

artificial variable τ ≥ 0 by writing atyi ≥ τ > 

bi.

• Minimize τ over all values of τ and a that 

satisfy the conditions a atyi ≥ bi and τ ≥ 0. 94

   0.5 ,    0.5    a a a a a a



• If the answer is zero, the samples are linearly 

separable, and we have a solution. If the 

answer is positive, there is no separating 

vector, but we have proof that the samples are 

non-separable.

• Formally, our problem is to find a vector u that 

minimizes the objective function z = αtu

subject to the constraints Au ≥ β and u ≥ 0, 

where
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Support Vector Machines

• We have seen how to train linear machines with 

margins. Support Vector Machines (SVMs) are 

motivated by many of the same considerations, but 

rely on preprocessing the data to represent patterns in 

a high dimension — typically much higher than the 

original feature space.

• With an appropriate nonlinear mapping Φ() to a 

sufficiently high dimension, data from two categories 

can always be separated by a hyperplane.
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• Here we assume each pattern xk has been transformed 

to yk = Φ(xk); we return to the choice of Φ() below. 

• For each of the n patterns, k = 1, 2, ..., n, we let zk = 

±1, according to whether pattern k is in ω1 or ω2. A 

linear discriminant in an augmented y space is 

g(y) = aty

where both the weight vector and the transformed 

pattern vector are augmented (by a0 = w0 and y0 = 1, 

respectively). Thus a separating hyperplane insures

zkg(yk) ≥ 1,       k = 1, ..., n    (105)

• The goal in training a Support Vector Machine is to 

find the separating hyperplane with the largest 

margin; 97
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As illustrated in Fig. 5.2 the distance from any 

hyperplane to a (transformed) pattern y is |g(y)|/||a||, 

and assuming that a positive margin b exists, Eq. 105 

implies

the goal is to find the weight vector a that maximizes b.

The support vectors are the (transformed) training 

patterns for which Eq. 105 represents an equality —

that is, the support vectors are (equally) close to the 

hyperplane.
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Figure 5.19: Training a Support Vector Machine consists of 

finding the optimal hyperplane, i.e., the one with the maximum 

distance from the nearest training patterns. The support vectors 

are those (nearest) patterns, a distance b from the hyperplane.

The three support vectors are shown in solid dots.
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The support vectors are the training samples that define 

the optimal separating hyperplane and are the most 

difficult patterns to classify. Informally speaking, they 

are the patterns most informative for the classification 

task.

SVM training

The first step is, of course, to choose the nonlinear Φ -

functions that map the input to a higher dimensional 

space. Often this choice will be informed by the 

designer’s knowledge of the problem domain. In the 

absence of such information, one might choose to use 

polynomials, Gaussians or yet other basis functions.
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We begin by recasting the problem of minimizing the

magnitude of the weight vector constrained by the

separation into an unconstrained problem by the

method of Lagrange undetermined multipliers.

and seek to minimize L(.) with respect to the weight 

vector a, and maximize it with respect to the 

undetermined multipliers αk ≥ 0.

It can be shown using the so-called Kuhn- Tucker 

construction (also associated with Karush 1939) that 

this optimization can be reformulated as maximizing:
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subject to the constraints

An important benefit of the Support Vector Machine 

approach is that the complexity of the resulting 

classifier is characterized by the number of support 

vectors — independent of the dimensionality of the 

transformed space. Thus SVMs tend to be less prone 

to problems of over-fitting than some other methods.
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Example 2: SVM for the XOR problem

While many Φ -functions could be used, here we use the 
simplest expansion up to second order: 1, √2x1, √2x2, √2x1x2, 
x1

2 and x2
2, where the √2 is convenient for normalization.
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We seek to maximize Eq.

subject to the constraints

While we could use iterative gradient descent, we 
can use analytic techniques instead. The solution is 
αk = 1/8, for k = 1, 2, 3, 4, and from the last term in 
Eq. 108 this implies that all four training patterns 
are support vectors — an unusual case due to the 
highly symmetric nature of the XOR problem.
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The final discriminant function is 
g(x) = g(x1, x2) = x1x2, 

and the decision hyperplane is defined by g = 0, 
which properly classifies  all training patterns.

The margin is easily computed from the solution 
||a|| and is found to be b = 1/||a|| = √2.



Linear SVM: the separable case

• Linear discriminant 

• Class labels

• Normalized version

1

2

1

1

k

k

k

if
z

if





 
 

 

x

x

Decide ω1 if g(x) > 0 and ω2 if g(x) < 0

0( ) tg w x w x

0( ) 0 ( ) 0, 1,2,...,t

k k k kz g or z w for k n   x w x
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From: Prof. Bebis lecture notes



Linear SVM: the separable case

• The distance of a point xk from the separating 

hyperplane should satisfy the constraint:

• To ensure uniqueness, impose:  

b||w||=1

• The above constraint becomes:

( )
, 0

|| ||

k kz g
b b 

x

w

1
( ) 1

|| ||
k kz g where b x

w
107



Linear SVM: the separable case

0Subject to  ( ) 1, 1,2,...,t

k kz w for k n  w x

Quadratic

Programming

Problem !
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Linear SVM: the separable case

• Use Lagrange  optimization:

• Easier to solve the “dual” problem:

2

0 0

1

1
( , , ) || || [ ( ) 1], 0

2

n
t

k k k k

k

L w z w  


    w w w x

1 ,

1

2

n n
t

k k j k j j k

k k j

z z  


  x x
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Linear SVM: the separable case

• The solution is given by:

• It can be shown that if xk is a not

support vector, then  λk=0.

1

0

n

k k k

k

t

k k

z

w z






 

w x

w x

Only support vectors

contribute to the solution!!
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The Karush-Kuhn-Tucker (KKT) conditions

0 0

1 1
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n n
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k k

g z w z w 
 

    x x x x x



Linear SVM: the non-separable case

• Allow misclassifications (i.e., soft margin 

classifier) by introducing error variables ψk : 

0( ) 1 , 1,2,...,t

k k kz w k n   w x

0( ) 1 , 1,2,...,t

k k kz w k n   w x
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||w||2
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Linear SVM: the non-separable case



1 ,

1

2

n n
t

k k j k j j k

k k j

z z  


  x x
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Linear SVM: the non-separable case



Nonlinear SVM

( )k kx x
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Extending the above concepts to the non-linear case relies on preprocessing 

the data to represent them in a much higher dimensionality space.

Using an appropriate nonlinear mapping Φ(.) to a sufficiently high 

dimensional space, data from two classes can always be separated by a 

hyperplane.



Nonlinear SVM (cont’d)

0

1

( ) ( ( ). ( ))
n

k k k

k

g z w


   x x x
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The kernel trick

• Compute dot products using a kernel function

• Advantages of using a kernel

– No need to know Φ() !!

– The discriminant is given by:

0

1

( ) ( , )
n

k k k

k

g z K w


 x x x

( , ) ( ). ( )k kK  x x x x
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The kernel trick (cont’d)

polynomial kernel:    K(x,y)=(x . y)d
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Choice of kernel is not unique!
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Suitable kernel functions
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Example
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Example (cont’d)
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Example (cont’d)
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Example (cont’d)
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Example (cont’d)
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Example (cont’d)
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Comments on SVMs
• Global optimization method, no local optima (i.e.,  based 

on exact  optimization, not approximate methods).

• The performance of SVMs depends on the choice of the 
kernel and its parameters.

– The best choice of kernel for a given problem is still a 
research problem.

• Its complexity depends on the number of support 
vectors, not on the dimensionality of the transformed 
space.

• Appear to avoid overfitting in high dimensional spaces 
and generalize well using a small training set.

• The optimal design of multi-class SVM classifiers is a 
research topic.

126


