
Chapter 5:

Linear Discriminant Functions

• Introduction

• Linear Discriminant Functions and

Decisions Surfaces

• Generalized Linear Discriminant

Functions

• Minimum Squared Error Procedures

• Support Vector Machines
1

2

• Introduction

– In chapter 3, the underlying probability densities

were known (or given)

– The training sample was used to estimate the

parameters of these probability densities (ML,

MAP estimations)

– In this chapter, we only know the proper forms

for the discriminant functions: similar to non-

parametric techniques

– They may not be optimal, but they are very

simple to use

– They provide us with linear classifiers

• The problem of finding a linear discriminant function

will be formulated as a problem of minimizing a

criterion function.

– sample risk, or training error; the average loss

incurred in classifying training the set of training

samples.

• It is difficult to derive the minimum-risk linear discriminant

anyway, and for that reason we investigate several related

criterion functions that are analytically more tractable.

3

Discriminant Approach

• Classification is viewed as “learning good

decision boundaries” that separate the

examples belonging to different classes in

a data set.

4

Discriminant function estimation

• Specify a parametric form of the decision

boundary (e.g., linear or quadratic) .

• Find the “best” decision boundary of the

specified form using a set of training examples.

• This is done by minimizing a criterion function

– e.g., “training error” (or “sample risk”)

5

2

1

1
() [(,)]

n

k k

k

J w z g x w
n

6

• Linear discriminant functions and
decisions surfaces

The Two-Category Case

– Definition

A discriminant function that is a linear combination
of the components of x can be written as

g(x) = wtx + w0 (1)

where w is the weight vector and w0 the bias

– A two-category classifier with a discriminant
function of the form (1) uses the following rule:

Decide 1 if g(x) > 0 and 2 if g(x) < 0

 Decide 1 if wtx > − w0 and 2 otherwise

If g(x) = 0 x is assigned to either class

7

Figure 5.1: A simple linear classifier having d input units, each

corresponding to the values of the components of an input

vector. Each input feature value xi is multiplied by its

corresponding weight wi; the output unit sums all these

products and emits a +1 if wtx + w0 > 0 or a −1 otherwise.

8

• The equation g(x) = 0 defines the decision surface

that separates points assigned to the category 1 from

points assigned to the category 2

• When g(x) is linear, the decision surface is a

hyperplane

• Algebraic measure of the distance from x to the

hyperplane (interesting result!)

• If x1 and x2 are both on the decision surface, then

w is normal to any vector lying in the hyperplane.

9

Figure 5.2: The linear decision boundary H, where g(x)=wtx+w0,

separates the feature space into two half-spaces R1

(where g(x) > 0) and R2 (where g(x) < 0).

w0 determines the distance of the hyperplane from the origin

10

– In conclusion, a linear discriminant function divides the

feature space by a hyperplane decision surface

– The orientation of the surface is determined by the normal

vector w and the location of the surface is determined by the

bias

p

2t

0

0 0

0

.
 (since is colinear with and 1)

since g() 0 and . ()

. .
() || ||

() ()
 (0,H)

p

t

p

t
t t

p p

r

g w

r r
w w r

wg g
therefore r in particular d

w w
x x w x x

w w

x w w w x w x

w w w
w x w x w

w w

x 0

w w w

The multi-category case

• Reduce the problem to c − 1 two-class;

separates points assigned to ωi from those not

assigned to ωi.

• Use c(c − 1)/2 linear discriminants, one for

every pair of classes.

– both can lead to regions in which the classification

is undefined.

• Defining c linear discriminant functions

11

12

Figure 5.3: Linear

decision boundaries for a

four-class problem. The

top figure shows ωi /not

ωi dichotomies while the

bottom figure shows ωi

/ωj dichotomies. The

pink regions have

ambiguous category

assignments.
No ∆H12H23H24

∆H24H13H34

∆H34H12H23

□H14H24H34H12

13

• The multi-category case

– We define c linear discriminant functions

and assign x to i if gi(x) > gj(x) j i; in

case of ties, the classification is undefined

– The classifier is a “linear machine”.

– A linear machine divides the feature space into

c decision regions, with gi(x) being the largest

discriminant if x is in the region Ri

0() 1,...,t

i i ig w i c x w x

14

ji

ji

ij

gg
Hd

ww
x

),(

- For a two contiguous regions Ri and Rj; the

boundary that separates them is a portion of

hyperplane Hij defined by:

gi(x) = gj(x)

 (wi – wj)
tx + (wi0 – wj0) = 0

wi – wj is normal to Hij and

15

Figure 5.4: Decision boundaries produced by a linear
machine for a three-class problem and a five-class problem.

16

• It is easy to show that the decision regions for a

linear machine are convex, this restriction limits the

flexibility and accuracy of the classifier.

• In particular, for good performance every decision

region should be singly connected, and this tends to

make the linear machine most suitable for problems

for which the conditional densities p(x|ωi) are

unimodal.

17

• Generalized Linear Discriminant Functions

Decision boundaries which separate between

classes may not always be linear

– The complexity of the boundaries may

sometimes request the use of highly non-linear

surfaces

– A popular approach to generalize the concept of

linear decision functions is to consider a

generalized decision function as:

g(x) = w1f1(x) + w2f2(x) + … + wNfN(x) + wN+1 (1)

where fi(x), 1 i N are scalar functions of the

pattern x, x IRn

18

• Introducing fN+1(x) = 1 we get:

• This latter representation of g(x) implies that any

decision function defined by equation (1) can be treated

as linear in the (N + 1) dimensional space (N+ 1 > n)

• g(x) maintains its non-linearity characteristics in IRn

• Quadratic decision functions for a 2-dimensional feature

space

1

1

1 2 1

1 2 1

() ()

where (, ,..., ,)

and ((), (),..., (), ())

N
T

i i

i

T

N N

T

N N

g w f

w w w w

f f f f

x x w x

w

x x x x x

2 2

1 1 2 1 2 3 2 4 1 5 2 6

2 2

1 2 6 1 1 2 2 1 2

()

: (, ,...,) and (x , , , , ,1)T T

g w x w x x w x w x w x w

here w w w x x x x x

x

w x

19

• For patterns x IRn, the most general quadratic decision

function is given by:

The number of terms at the right-hand side is:

This is the total number of weights which are the free

parameters of the problem

– If for example n = 3, the vector is 10-dimensional

– If for example n = 10, the vector is 65-dimensional

n

i

n

i

n

ij

n

i

niijiijiii wxwxxwxwg
1

1

1 1 1

1

2 (2))(x

2

)2)(1(
1

2

)1(
1

nn
n

nn
nNl

x

x

20

• In the case of polynomial decision functions of

order m, a typical fi(x) is given by:

– It is a polynomial with a degree between 0 and m. To

avoid repetitions, we request i1 i2 … im

•

(where g0(x) = wn+1) is the most general

polynomial decision function of order m

1 2

1 2

1 2 i

() ...

 1 , ,..., and ,1 is 0 or 1.

m

m

ee e

i i i i

m

f x x x

where i i i n e i m

x

n

i

n

ii

n

ii

m

iiiiii

m

mm

mm
gxxxwg

1

1

...

1 12 1

2121
)(......)(xx

21

Example 1: Let n = 3 and m = 2 then:

Example 2: Let n = 2 and m = 3 then:

4332211

2

3333223

2

22231132112

2

111

3

4332211

3

1

2

 w

)(
12

2121

1

wxwxwxw

xwxxwxwxxwxxwx

wxwxwxwxxwg
ii

iiii

i

x

32211

2

2222112

2

111

2
1

2

1

2

23

2222

2

211222

2

1112

3

1111

2
2

22

1

3

 w

)()(g where

)(w

)()(

12

2121

1

23

321321

121

wxwxwxwxxwx

gxxw

gxwxxwxxwx

gxxxwg

ii

iiii

i

ii

iiiiii

iii

xx

x

xx

22

• The commonly used quadratic decision function can
be represented as the general n-dimensional quadratic
surface:

g(x) = xTAx + xTb +c

where the matrix A = (aij), the vector

b = (b1, b2, …, bn)
T and c, depends on the weights

wii, wij, wi of equation (2)

• If A is positive definite then the decision function is a
hyperellipsoid with axes in the directions of the
eigenvectors of A

– In particular: if A = In (Identity), the decision function
is simply the n-dimensional hypersphere

– If A is negative definite, the decision function describes
a hyperhyperboloid

– In conclusion: it is only the matrix A which determines
the shape and characteristics of the decision function

23

Exercise: Consider a 3 dimensional space and cubic

polynomial decision functions

1. How many terms are needed to represent a decision function if only cubic

and linear functions are assumed?

2. Present the general 4th order polynomial decision function for a 2

dimensional pattern space

3. Let IR3 be the original pattern space and let the decision function

associated with the pattern classes 1 and 2 be:

for which g(x) > 0 if x 1 and g(x) < 0 if x 2

a) Rewrite g(x) as g(x) = xTAx + xTb + c

b) Determine the class of each of the following pattern vectors:

(1,1,1), (1,10,0), (0,1/2,0)

1242)(2132

2

3

2

1 xxxxxxg x

24

• Positive Definite Matrices

1. A square matrix A is positive definite if xTAx>0

for all nonzero column vectors x.

2. It is negative definite if xTAx< 0 for all nonzero x.

3. It is positive semi-definite if xTAx 0.

4. And negative semi-definite if xTAx 0 for all x.

These definitions are hard to check directly and

you might as well forget them for all practical

purposes.

25

More useful in practice are the following properties,

which hold when the matrix A is symmetric and

which are easier to check.

The i-th principal minor of A is the matrix Ai formed

by the first i rows and columns of A. So, the first

principal minor of A is the matrix Ai = (a11), the

second principal minor is the matrix:

on. so and ,
a

a

2221

1211

2

a

a
A

26

– The matrix A is positive definite if all its principal

minors A1, A2, …, An have strictly positive

determinants

– If these determinants are non-zero and alternate in

signs, starting with det(A1)<0, then the matrix A is

negative definite

– If the determinants are all non-negative, then the

matrix is positive semi-definite

– If the determinant alternate in signs, starting with

det(A1)0, then the matrix is negative semi-definite

27

To fix ideas, consider a 2×2 symmetric matrix:

 It is positive definite if:
a) det(A1) = a11 > 0

b) det(A2) = a11a22 – a12a12 > 0

 It is negative definite if:
a) det(A1) = a11 < 0

b) det(A2) = a11a22 – a12a12 > 0

 It is positive semi-definite if:
a) det(A1) = a11 0

b) det(A2) = a11a22 – a12a12 0

 And it is negative semi-definite if:
a) det(A1) = a11 0

b) det(A2) = a11a22 – a12a12 0.

.
a

a

2221

1211

a

a
A

28

Exercise 2:

Let

1. Compute the decision boundary assigned to the matrix
A (g(x) = xTAx + xTb + c) in the case where
bT = (1 , 2) and c = - 3

2. Solve det(A-I) = 0 and find the shape and the
characteristics of the decision boundary separating
two classes 1 and 2

3. Classify the following points:
 xT = (0 , - 1)

 xT = (1 , 1)

4 1

1 2
A

29

Solution of Exercise 2:

1.

2.

This latter equation is a straight line colinear to the
vector:

32242x

3242x

32)4,(2x

3
2

1
),(

4 1

1 2
),(x)g(

2121

2

2

2

1

21

2

22121

2

1

21

2

1

2121

21

2

1

21

xxxxx

xxxxxxx

xx
x

x
xxx

xx
x

x
xx

0)21(
0)21(

0)2-(-1

:obtain we,0
-4 1

1 -2
 using 23

21

21

21

2

1

1

xx
xx

xx

x

x
For

T)21, 1(1 v

30

0)12(
0)21(

0)12(

:obtain we,0
-4 1

1 -2
 using 23

21

21

21

2

1

2

xx
xx

xx

x

x
For

This latter equation is a straight line colinear to the vector:

The ellipsis decision boundary has two axes, which are

respectively colinear to the vectors v1 and v2

3. x = (0 , -1) T g(0 , -1) = -1 < 0 x 2

x = (1 , 1) T g(1 , 1) = 8 > 0 x 1

T)21, 1(2 v

31

Generalized linear discriminant

or

Let the quadratic discriminant function be g(x) = a1 + a2x + a3x
2

so that the three-dimensional vector y is given by

Although the decision regions in y-space are convex, this is by no means

the case in x-space. More generally speaking, even with relatively simple

functions yi(x), decision surfaces induced in an x-space can be fairly

complex (Fig. 5.6).

See next Fig

32

Figure 5.5: The mapping y = (1, x, x2)t takes a line and transforms it to a

parabola in three dimensions. A plane splits the resulting y space into

regions corresponding to two categories, and this in turn gives a non-simply

connected decision region in the one-dimensional x space.

Error in figure:

Plane should pass

through origin

33

Figure 5.6: The two-dimensional input space x is

mapped through a polynomial function f to y. Here the

mapping is y1 = x1, y2 = x2 and y3 x1x2. A linear

discriminant in this transformed space is a hyperplane,

which cuts the surface. Points to the positive side of the

hyperplane correspond to category ω1, and those

beneath it ω2. Here, in terms of the x space, R1 is a not

simply connected.

Ĥ

34

In the particular case of the linear discriminant function

where we set x0 = 1

and y is sometimes called an augmented feature vector.

Likewise, an augmented weight vector can be written as:

35

The addition of a constant component to x preserves

all distance relationships among samples. The

resulting y vectors all lie in a d-dimensional subspace,

which is the x-space itself. The hyperplane decision

surface defined by aty = 0 passes through the origin

in y-space, even though the corresponding hyperplane

H can be in any position in x-space.

The distance from y to is given by |aty|/||a||, or

|g(x)|/||a||. Since ||a|| > ||w||, this distance is less than,

or at most equal to the distance from x to H.

Ĥ

Ĥ

36

Figure 5.7: A three-dimensional augmented feature space y and augmented

weight vector a (at the origin). The set of points for which aty = 0 is a plane

(or more generally, a hyperplane) perpendicular to a and passing through the

origin of y space, as indicated by the red disk. Such a plane need not pass

through the origin of the two-dimensional x-space at the top, of course, as

shown by the dashed line. Thus there exists an augmented weight vector a

that will lead to any straight decision line in x-space.

The Two-Category Linearly-Separable Case

• Suppose now that we have a set of n samples y1, ...,

yn, some labeled ω1 and some labeled ω2. We want to

use these samples to determine the weights a in a

linear discriminant function g(x) = aty.

• If there exists a solution (weight vector) for which the

probability of error is very low, the samples are said

to be linearly separable.

• A sample yi is classified correctly if atyi> 0 and yi is

labelled ω1 or if atyi < 0 separable and yi is labeled

ω2.

37

• This suggests a “normalization”, the replacement of

all samples labelled ω2 by their negatives. With this

“normalization” we can forget the labels and look for

a weight vector a such that atyi > 0 for all of the

samples. Such a weight vector is called a separating

vector or more generally a solution vector.

• The equation atyi = 0 defines a hyperplane through

the origin of weight space having yi as a normal

vector.

• The solution vector — if it exists — must be on the

positive side of every hyperplane.

38

39

Figure 5.8: Four training samples (black for ω1, red for ω2) and

the solution region in feature space. The figure on the left shows

the raw data; the solution vectors leads to a plane that separates

the patterns from the two categories. In the figure on the right,

the red points have been “normalized” — i.e., changed in sign.

Now the solution vector leads to a plane that places all

“normalized” points on the same side.

Raw Data

Normalized Data:

red points changed in sign

• If we seek the minimum-length weight vector

satisfying atyi ≥ b for all i, then b which is a positive

constant called the margin.

40

Gradient Descent Procedures
• To find solution to set of inequalities atyi > 0, define a

criterion function J(a) that is minimized if a is a

solution vector…We will define such a function later.

• Basic gradient descent is very simple. We start with

some arbitrarily chosen weight vector a(1) and

compute the gradient vector The next value

a(2) is obtained by moving some distance from a(1)

in the direction of steepest descent, i.e., along the

negative of the gradient.

where η is a positive scale factor or learning rate that

sets the step size.
41

 J (1) . a

42

We now consider a principled method for setting the

learning rate. Suppose that the criterion function can

be well approximated by the second-order expansion

around a value a(k) as

43

Taylor Series Expansion

44

Vector Case

45

Matrix Form

F x

x1

F x

x2

F x

xn

F x

= F x 2

x1

2

2

F x

x1 x2

2

F x

x1 xn

2

F x

x2 x1

2

F x

x2

2

2

F x

x2 xn

2

F x

xn x1

2

F x

xn x2

2

F x

xn

2

2

F x

=

Gradient Hessian

• where H is the Hessian matrix of second partial

derivatives ∂2J/∂ai∂aj evaluated at a(k).

• Substituting

– J(a(k + 1)) can be minimized by the choice (derivative vs. η(k))

• An alternative approach, take the gradient of the

second-order approximation and set it equal to zero: It

is Newton’s algorithm . (ref: ANN Ch 9 lecture notes)

46

optimum learning rate

Taylor series

expansion

../../database11/transmaster/Ch09-PerformanceOptimization.ppt

47

Figure 5.10: The sequence of weight

vectors given by a simple gradient descent

method (red) and by Newton’s (second

order) algorithm (black). Newton’s method

typically leads to greater improvement per

step, even when using optimal learning

rates for both methods. However the added

computational burden of inverting the

Hessian matrix used in Newton’s method

is not always justified, and simple descent

may suffice.
nnd9nm, nnd9sd

../../../../MATLAB7/bin/matlab.bat

Minimizing the Perceptron Criterion

Function

• Criterion function for solving the linear inequalities

atyi > 0. The most obvious choice is to let J(a; y1, ...,

yn) be the number of samples misclassified by a.

However, because this function is piecewise constant,

it is obviously a poor candidate for a gradient search.

A better choice is the Perceptron criterion function

where Y(a) is the set of samples misclassified by a.

Jp(a) is proportional to the sum of the distances from the

misclassified samples to the decision boundary. 48

49

N
o

 o
f m

is
c

la
s

s
ifie

d

s
a
m

p
le

s
: P

ie
c
e
w

is
e

c
o

n
s

ta
n

t, u
n

a
c

c
e

p
ta

b
le

P
e

rc
e

p
tro

n
 c

rite
rio

n
: P

ie
c

e
w

is
e

 lin
e

a
r,

a
c

c
e

p
ta

b
le

 fo
r g

ra
d

ie
n

t d
e

s
c

e
n

t

Squared error: Useful when patterns are not linearly

separable
Squared Error with margin

50

FIGURE 5.11. Four learning criteria as a function of

weights in a linear classifier. At the upper left is the

total number of patterns misclassified, which is

piecewise constant and hence unacceptable for

gradient descent procedures. At the upper right is the

Perceptron criterion, which is piecewise linear and

acceptable for gradient descent. The lower left is

squared error, which has nice analytic properties and is

useful even when the patterns are not linearly

separable. The lower right is the square error with

margin. A designer may adjust the margin b in order to

force the solution vector to lie toward the middle of

the b=0 solution region in hopes of improving

generalization of the resulting classifier.

51

We use the term “batch” training to refer to the fact

that (in general) a large group of samples is used when

computing each weight update.

consider all

examples

misclassified

Perceptron rule (cont’d)

• Move the hyperplane so that training

samples are on its positive side.

52

53

Figure 5.12: The weight vector begins at 0, and the algorithm sequentially adds to

it vectors equal to the “normalized” misclassified patterns themselves. In the

example shown, this sequence is, y1 + y2 +y3, y3, y1, y3, at which time the vector

lies in the solution region and iteration terminates. Note that the second update (by

y3) takes the candidate vector farther from the solution region than after the first

update (In an alternate, batch method, all the misclassified points are added at

each iteration step leading to a smoother trajectory in weight space.)

η(k)=1

a(1)=0

Convergence of Single-Sample

Correction (simpler than batch)

54

yk is one of the n samples y1, ..., yn, and where each yk is misclassified.

consider one

example at a

time

η(k)=1

55

56

Theorem 5.1 (Perceptron Convergence) If training

samples are linearly separable then the sequence of

weight vectors given by Algorithm 4 will terminate at a

solution vector.

Proof? p230

Some Direct Generalizations

Correction whenever at(k)yk fails to exceed a margin b

Upadte:

Now at(k)yk≤b for all k.

57

It can be shown that if the samples are linearly separable and if

then a(k) converges to a solution vector a satisfying atyi > b for all i

-

>b

&

58

From a practical viewpoint, we want to make wise

choice of b and η(k)

Another variant of interest is our original gradient

descent algorithm for Jp,

the set of training samples

misclassified by a(k).

59

Some Direct Generalizations: Winnow

Algorithm

A close descendant of the Perceptron algorithm is the

Winnow algorithm, which has applicability to

separable training data. The key difference is that

while the weight vector returned by the Perceptron

algorithm has components ai (i = 0, ..., d), in Winnow

they are scaled according to 2sinh[ai]. In one version,

the balanced Winnow algorithm, there are separate

“positive” and “negative” weight vectors, a+ and a−,

each associated with one of the two categories to be

learned.

Skip

Advantages:

Convergence is faster than in a Perceptron because of proper

setting of learning rate.

Each constituent value does not overshoot its final value.

Benefit is pronounced when there are a large number of

irrelevant or redundant features learnt.

60

61

Relaxation Procedures

The criterion function Jp is by no means the only

function we can construct that is minimized when a is

a solution vector. A close but distinct relative is

Like Jp, Jq focuses attention on the misclassified samples.

Its chief difference is that its gradient is continuous,

whereas the gradient of Jp is not. Thus, Jq presents a

smoother surface to search (Fig. 5.11).

the set of training samples misclassified by a.

62

Unfortunately, Jq is so smooth near the boundary of the

solution region that the sequence of weight vectors can

converge to a point on the boundary. It is particularly

embarrassing to spend some time following the

gradient merely to reach the boundary point a = 0.

Another problem with Jq is that its value can be

dominated by the longest sample vectors. Both of these

problems are avoided by the criterion function

the set of training samples for which aty≤b.

63

The single-sample

correction rule (35)

64

is the distance from a(k) to the hyperplane atyk = b

If η = 1, a(k) is moved exactly to the hyperplane, so that the

“tension” created by the inequality at(k)yk ≤ b is “relaxed” (Fig.

5.14).

or atyk >b for all yk

65

Figure 5.14: In each step of a basic relaxation algorithm, the

weight vector is moved a proportion η of the way to wards the

hyperplane defined by atyk = b.

From (35)

If η < 1, then at(k+1)yk <b underrelaxation

If 1<η < 2, then at(k+1)yk >b overrelaxation

66

Figure 5.15: At the left, under relaxation (η < 1) leads to

needlessly slow descent, or even failure to converge. Over-

relaxation (1 < η < 2, shown in the right) describes

overshooting; nevertheless convergence will ultimately be

achieved.

Nonseparable Behavior

• The Perceptron and relaxation procedures give us a

number of simple methods for finding a separating

vector when the samples are linearly separable. All of

these methods are called error-correcting procedures,

because they call for a modification error correcting

procedure of the weight vector when and only when

an error is encountered.

• When design sets are large, points are most likely not

linearly separable!

67

• How does error correction procedures behave

when points are not linearly separable?

– Corrections will never cease in an error correction

procedure

– Infinite sequence of weight vectors

• Weight vectors are bounded

– Empirical rule based on weight vector fluctuating

near a terminal value

– Averaging weight vectors can reduce risk of

obtaining a bad solution

68

Minimum Squared Error

Procedures

• The criterion functions we have considered thus far

have focused their attention on the misclassified

samples. We shall now consider a criterion function

that involves all of the samples.

• Where previously we have sought a weight vector a

making all of the inner products atyi positive, now we

shall try to make atyi = bi, where the bi are some

arbitrarily specified positive constants.

• Let Y be the n-by- matrix (= d + 1) whose ith

row is the vector yi
t, and let b be the column vector

b = (b1, ..., bn)
t. 69

d̂ d̂

70

If Y were nonsingular, we could write a = Y−1b, however, Y is

rectangular. If we define the error vector e by e = Ya − b, then

one approach is to try to minimize the squared length of the

error vector.

Weight vector

to be determined

71

Equating to zero

Y † is called the pseudoinverse of Y.

Note also that Y†Y = I, but YY† ≠ I in general. However, a

minimum-squared-error (MSE) solution always exists. In

particular, if Y† is defined more generally by

The MSE solution depends on the margin vector b.

Closed form solution

MSE Solution based on Pseudoinverse

note: n > d+1

72

Example of a linear classifier by matrix pseudoinverse

Two classes; ω1: (1, 2)t and (2, 0)t, and ω2: (3, 1)t and (2, 3)
t

b = (1, 1, 1, 1)t.

Properties of MSE Procedure

• Related to Fisher’s Linear Discriminant

• Asymptotic approximation to Bayes

discriminant function

• Can be formulated as a gradient descent

procedure

73

MSE Relationship to Fisher’s

Linear Discriminant
• Show that with proper choice of the vector b the MSE

discriminant function aty is directly related to Fisher’s linear

discriminant

• Assume first n1 samples are labelled ω1 and second n2 samples

are labelled ω2

74

w
b

-

a

This special choice of b

links the MSE solution

to Fisher’s Linear

Discriminant

MSE and Fisher’s Linear Discriminant

• Define sample means mi and pooled sample scatter

matrix SW

and plug into MSE formulation yields

where α is a scalar which is identical to the solution to

the Fisher’s linear discriminant except for a scale factor

• Decision rule: Decide ω1 if wt(x-m)>0; otherwise

decide ω2
75

)(21

1
mmSw

Wn

t

Di

W

Di

i

i

, i
n

))((

2 1
1

ii

2

1

i

mxmxS

xm

x

x

76

Proof:

77

Since the vector (m1 −m2)(m1 −m2)
tw is in the

direction of m1 − m2 for any value of w, we can write

where α is some scalar

MSE Relationship to Bayes

• If b=1n MSE approaches a minimum squared

error approximation to Bayes discriminant

function

g0(x) = P(ω1|x) - P(ω2|x)

in the limit as number of samples approaches

infinity.

78

MSE Approximation to Bayes

• If b=1n MSE solution approaches a minimum mean
squared approximation to Bayes discriminant function

79

Class conditional densities

Posteriors

Bayes discriminant function

MSE solution (best approximation in region of data points)

However MSE does
not necessarily
minimize
probability of error

80

81g0(x) = P(ω1|x) − P(ω2|x)

MSE Solution using Gradient Descent

• Criterion function Js(a) = ||Ya-b||2 could be

minimized by gradient descent

• Advantage over pseudo-inverse:

– Problem when YtY is singular

– Avoids need for working with large matrices

– Computation involved is a feedback scheme that

copes with round off or truncation

82

The Widrow-Hoff Procedure

83

the obvious update rule is

Can be reduced for storage requirement to the rule

where samples are considered sequentially:

-

84

the Widrow-Hoff or LMS rule (Least-Mean-Squared)

85

Figure 5.17: The LMS algorithm need not converge to

a separating hyperplane, even if one exists. Since the

LMS solution minimizes the sum of the squares of the

distances of the training points to the hyperplane, for

this example the plane is rotated clockwise compared to

a separating hyperplane.

The Ho-Kashyap Procedures

• The Perceptron and relaxation procedures find

separating vectors if the samples are linearly

separable, but do not converge on nonseparable

problems.

• If the margin vector b is chosen arbitrarily, all we can

say is that the MSE procedures minimize ||Ya − b||2.

Now if the training samples happen to be linearly

separable, then there exists an and a such that

where by > 0, we mean that every component of

is positive.
86

â b̂
0ˆˆ baY

b̂b̂

87

We shall now see how the MSE procedure can be modified to

obtain both a separating vector a and a margin vector b.

Both a and b in the criterion function Js(a, b) = ||Ya − b||2 are

allowed to vary (subject to the constraint b > 0), then the

minimum value of Js is zero, and the a that achieves that

minimum is a separating vector.

The gradient of Js with respect to a is given by

Js = 2Yt(Ya − b),

and the gradient of Js with respect to b is given by

Js = −2(Ya − b).

For any value of b, we can always take a = Y†b, thereby

obtaining Js = 0 and minimizing Js with respect to a in one

step.

a

b

a

88

We must avoid a descent procedure that converges to b = 0. We

start with b > 0 and to refuse to reduce any of its components.

We can do this and still try to follow the negative gradient if we

first set all positive components of Js to zero.

Thus, if we let |v| denote the vector whose components are the

magnitudes of the corresponding components of v, we are led to

consider an update rule for the margin of the form

b(k + 1) = b(k) − (η/2)[Js − | Js |].

Ho-Kashyap rule for minimizing Js(a, b):

b(1) > 0 but otherwise arbitrary

b(k + 1) = b(k) + 2η(k)e+(k),

Where e(k) is the error vector e(k) = Ya(k) − b(k),

e+(k) is the positive part of the error vector

e+(k)=(1/2)(e(k)+|e(k)|) and a(k) = Y†b(k), k= 1, 2, …

b

b b

89

The Ho-Kashyap algorithm provides us with a separating

vector in the separable case, and with evidence of

nonseparability in the nonseparable case. However, there is

no bound on the number of steps needed to disclose

nonseparability.

b←b+2η(k)e+

90

Some Related Procedures

If we write Y† = (YtY)−1Yt and make use of the fact

that Yte(k) = 0, we can modify the Ho-Kashyap rule as

follows

e(k) = Ya(k) − b(k).

This then gives the algorithm for fixed learning rate:

91

This algorithm differs from the Perceptron and relaxation

algorithms for solving linear inequalities in at least three ways:

(1) it varies both the weight vector a and the margin vector b,

(2) it provides evidence of nonseparability, but

(3) it requires the computation of the pseudoinverse of Y.

Linear Programming Algorithms*

• The Perceptron, relaxation and Ho-Kashyap

procedures are basically gradient descent procedures

for solving simultaneous linear inequalities.

• Linear programming techniques are procedures for

maximizing or minimizing linear functions subject to

linear equality or inequality constraints.

• Find a vector u = (u1, ..., um)t that minimizes the

linear (scalar) objective function z = αtu subject to

the constraint Au ≥ β, where α is an m-by-1 cost

vector, β is an l-by-1 vector, and A is an l-by-m

matrix. 92

• The simplex algorithm is the classical iterative

procedure for solving this problem. For technical

reasons, it requires the imposition of one more

constraint, viz., u ≥ 0.

93

Simplex algorithm:

Surfaces of constant z are

shown in gray While constraints

are shown in red. Simplex finds

the extremum of z

• If we think of u as being the weight vector a,

this constraint is unacceptable.

• We write a≡a+-a- where

• Suppose that we have a set of n samples

y1,...,yn and we want a weight vector a that

satisfies atyi ≥ bi > 0 for all i.

• One approach is to introduce what is called an

artificial variable τ ≥ 0 by writing atyi ≥ τ >

bi.

• Minimize τ over all values of τ and a that

satisfy the conditions a atyi ≥ bi and τ ≥ 0. 94

 0.5 , 0.5 a a a a a a

• If the answer is zero, the samples are linearly

separable, and we have a solution. If the

answer is positive, there is no separating

vector, but we have proof that the samples are

non-separable.

• Formally, our problem is to find a vector u that

minimizes the objective function z = αtu

subject to the constraints Au ≥ β and u ≥ 0,

where

95

Support Vector Machines

• We have seen how to train linear machines with

margins. Support Vector Machines (SVMs) are

motivated by many of the same considerations, but

rely on preprocessing the data to represent patterns in

a high dimension — typically much higher than the

original feature space.

• With an appropriate nonlinear mapping Φ() to a

sufficiently high dimension, data from two categories

can always be separated by a hyperplane.

96

• Here we assume each pattern xk has been transformed

to yk = Φ(xk); we return to the choice of Φ() below.

• For each of the n patterns, k = 1, 2, ..., n, we let zk =

±1, according to whether pattern k is in ω1 or ω2. A

linear discriminant in an augmented y space is

g(y) = aty

where both the weight vector and the transformed

pattern vector are augmented (by a0 = w0 and y0 = 1,

respectively). Thus a separating hyperplane insures

zkg(yk) ≥ 1, k = 1, ..., n (105)

• The goal in training a Support Vector Machine is to

find the separating hyperplane with the largest

margin; 97

98

As illustrated in Fig. 5.2 the distance from any

hyperplane to a (transformed) pattern y is |g(y)|/||a||,

and assuming that a positive margin b exists, Eq. 105

implies

the goal is to find the weight vector a that maximizes b.

The support vectors are the (transformed) training

patterns for which Eq. 105 represents an equality —

that is, the support vectors are (equally) close to the

hyperplane.

99

Figure 5.19: Training a Support Vector Machine consists of

finding the optimal hyperplane, i.e., the one with the maximum

distance from the nearest training patterns. The support vectors

are those (nearest) patterns, a distance b from the hyperplane.

The three support vectors are shown in solid dots.

100

The support vectors are the training samples that define

the optimal separating hyperplane and are the most

difficult patterns to classify. Informally speaking, they

are the patterns most informative for the classification

task.

SVM training

The first step is, of course, to choose the nonlinear Φ -

functions that map the input to a higher dimensional

space. Often this choice will be informed by the

designer’s knowledge of the problem domain. In the

absence of such information, one might choose to use

polynomials, Gaussians or yet other basis functions.

101

We begin by recasting the problem of minimizing the

magnitude of the weight vector constrained by the

separation into an unconstrained problem by the

method of Lagrange undetermined multipliers.

and seek to minimize L(.) with respect to the weight

vector a, and maximize it with respect to the

undetermined multipliers αk ≥ 0.

It can be shown using the so-called Kuhn- Tucker

construction (also associated with Karush 1939) that

this optimization can be reformulated as maximizing:

102

subject to the constraints

An important benefit of the Support Vector Machine

approach is that the complexity of the resulting

classifier is characterized by the number of support

vectors — independent of the dimensionality of the

transformed space. Thus SVMs tend to be less prone

to problems of over-fitting than some other methods.

103

Example 2: SVM for the XOR problem

While many Φ -functions could be used, here we use the
simplest expansion up to second order: 1, √2x1, √2x2, √2x1x2,
x1

2 and x2
2, where the √2 is convenient for normalization.

104

We seek to maximize Eq.

subject to the constraints

While we could use iterative gradient descent, we
can use analytic techniques instead. The solution is
αk = 1/8, for k = 1, 2, 3, 4, and from the last term in
Eq. 108 this implies that all four training patterns
are support vectors — an unusual case due to the
highly symmetric nature of the XOR problem.

105

The final discriminant function is
g(x) = g(x1, x2) = x1x2,

and the decision hyperplane is defined by g = 0,
which properly classifies all training patterns.

The margin is easily computed from the solution
||a|| and is found to be b = 1/||a|| = √2.

Linear SVM: the separable case

• Linear discriminant

• Class labels

• Normalized version

1

2

1

1

k

k

k

if
z

if

x

x

Decide ω1 if g(x) > 0 and ω2 if g(x) < 0

0() tg w x w x

0() 0 () 0, 1,2,...,t

k k k kz g or z w for k n x w x

106
From: Prof. Bebis lecture notes

Linear SVM: the separable case

• The distance of a point xk from the separating

hyperplane should satisfy the constraint:

• To ensure uniqueness, impose:

b||w||=1

• The above constraint becomes:

()
, 0

|| ||

k kz g
b b

x

w

1
() 1

|| ||
k kz g where b x

w
107

Linear SVM: the separable case

0Subject to () 1, 1,2,...,t

k kz w for k n w x

Quadratic

Programming

Problem !

108

2 1
: 2 || ||

||
Maximize Margin Minim ze

|
i

| 2
b w

w

Linear SVM: the separable case

• Use Lagrange optimization:

• Easier to solve the “dual” problem:

2

0 0

1

1
(, ,) || || [() 1], 0

2

n
t

k k k k

k

L w z w

 w w w x

1 ,

1

2

n n
t

k k j k j j k

k k j

z z

 x x

109

Linear SVM: the separable case

• The solution is given by:

• It can be shown that if xk is a not

support vector, then λk=0.

1

0

n

k k k

k

t

k k

z

w z

w x

w x

Only support vectors

contribute to the solution!!

110

The Karush-Kuhn-Tucker (KKT) conditions

0 0

1 1

() (.) (.)
n n

t

k k k k k k

k k

g z w z w

 x x x x x

Linear SVM: the non-separable case

• Allow misclassifications (i.e., soft margin

classifier) by introducing error variables ψk :

0() 1 , 1,2,...,t

k k kz w k n w x

0() 1 , 1,2,...,t

k k kz w k n w x

111

||w||2

112

Linear SVM: the non-separable case

1 ,

1

2

n n
t

k k j k j j k

k k j

z z

 x x

113

Linear SVM: the non-separable case

Nonlinear SVM

()k kx x

114

Extending the above concepts to the non-linear case relies on preprocessing

the data to represent them in a much higher dimensionality space.

Using an appropriate nonlinear mapping Φ(.) to a sufficiently high

dimensional space, data from two classes can always be separated by a

hyperplane.

Nonlinear SVM (cont’d)

0

1

() ((). ())
n

k k k

k

g z w

 x x x

115

The kernel trick

• Compute dot products using a kernel function

• Advantages of using a kernel

– No need to know Φ() !!

– The discriminant is given by:

0

1

() (,)
n

k k k

k

g z K w

 x x x

(,) (). ()k kK x x x x

116

The kernel trick (cont’d)

polynomial kernel: K(x,y)=(x . y)d

117

Choice of kernel is not unique!

118

Suitable kernel functions

119

Example

120

Example (cont’d)

121

Example (cont’d)

122

Example (cont’d)

123

Example (cont’d)

124

Example (cont’d)

125

Comments on SVMs
• Global optimization method, no local optima (i.e., based

on exact optimization, not approximate methods).

• The performance of SVMs depends on the choice of the
kernel and its parameters.

– The best choice of kernel for a given problem is still a
research problem.

• Its complexity depends on the number of support
vectors, not on the dimensionality of the transformed
space.

• Appear to avoid overfitting in high dimensional spaces
and generalize well using a small training set.

• The optimal design of multi-class SVM classifiers is a
research topic.

126

