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Chapter 4 (part 2):

Non-Parametric Classification

• kn–Nearest Neighbor Estimation

• The Nearest-Neighbor Rule

• Relaxation methods

All materials used in this course were taken from the textbook “Pattern Classification” by Duda et al., John Wiley & Sons, 2001 

with the permission of the authors and the publisher
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• Goal: a solution for the problem of the 
unknown “best” window function

– Let the cell volume be a function of the 
training data

– Center a cell about x and let it grows until 
it captures kn samples (kn = f(n))

– kn are called the kn nearest-neighbors of x

kn - Nearest Neighbor Estimation
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Two possibilities can occur:

• Density is high near x; therefore the cell will be small 

which provides a good resolution

• Density is low; therefore the cell will grow large and 

stop until higher density regions are reached

– We can obtain a family of estimates by setting kn=k1n and 

choosing different values for k1
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we want kn to go to infinity as n goes to infinity, since 

this assures us that kn/n will be a good estimate of the 

probability that a point will fall in the cell of volume 

Vn. However, we also want kn to grow sufficiently 

slowly that the size of the cell needed to capture kn

training samples will shrink to zero. Thus, it is clear 

from Eq. 31 that the ratio kn/n must go to zero.

If we take (31)
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FIGURE 4.10. Eight points in one dimension and the k-

nearest-neighbor density estimates, for k = 3 and 5. Note 

especially that the discontinuities in the slopes in the estimates 

generally lie away from the positions of the prototype points.
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FIGURE 4.11. The k-nearest-neighbor estimate of a two-dimensional 

density for k = 5. Notice how such a finite n estimate can be quite “jagged,” 

and notice that discontinuities in the slopes generally occur along lines away 

from the positions of the points themselves.
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FIGURE 4.12. Several k-nearest-neighbor estimates of two

unidimensional densities: a Gaussian and a bimodal distribution. Notice

how the finite n estimates can be quite “spiky.”
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The parameter kn acts as a smoothing parameter and needs to be optimized.
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Figure 2.28 Plot of 200 data points from the oil data set showing 

values of x6 plotted against x7, where the red, green, and blue

points correspond to the ‘laminar’, ‘annular’, and ‘homogeneous’ 

classes, respectively. Also shown are the classifications of the 

input space given by the K-nearest-neighbor algorithm for various 

values of K.
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Parzen windows kn-nearest-neighbor

1nk k n

Parzen windows vs kn-nearest-neighbor 

estimation
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Density estimation examples for 2-D circular data.

Selim Aksoy (Bilkent University)
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Selim Aksoy (Bilkent University) Density estimation examples for 2-D banana shaped data.
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• Estimation of a-posteriori probabilities

Goal: estimate P(i|x) from a set of n labeled samples

• Let’s place a cell of volume V around x and 

capture k samples

• ki samples amongst k turned out to be labeled i 

then: 

pn(x, i) = (ki /n)/V= ki/(n.V)

An estimate for pn(i|x) is:
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• ki/k is the fraction of the samples within the cell 
that are labeled i

• For minimum error rate, the most frequently 
represented category within the cell is selected

• If k is large and the cell sufficiently small, the 
performance will approach the best possible 
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• The nearest –neighbor rule

– Let Dn = {x1, x2, …, xn} be a set of n labeled prototypes

– Let x΄  Dn be the closest prototype to a test point x
then the nearest-neighbor rule for classifying x is to 
assign it the label associated with x΄

– The nearest-neighbor rule leads to an error rate greater 
than the minimum possible; the Bayes rate

– If the number of prototype is large (unlimited), the error 
rate of the nearest-neighbor classifier is never worse 
than twice the Bayes rate (it can be demonstrated!)

– If n , it is always possible to find x΄ sufficiently 
close so that: P(i | x΄)  P(i | x) 
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If we define ωm(x) by

then the Bayes decision rule always selects ωm.

FIGURE 4.13. In two dimensions, the nearest-neighbor algorithm leads to a

partitioning of the input space into Voronoi cells, each labeled by the category

of the training point it contains. In three dimensions, the cells are three-

dimensional, and the decision boundary resembles the surface of a crystal.
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• If P(m | x)  1, then the nearest neighbor selection

is almost always the same as the Bayes selection

• When P(ωm|x) is close to 1/c, so that all classes are

essentially equally likely, the selections made by

the nearest-neighbor rule and the Bayes decision

rule are rarely the same, but the probability of error

is approximately 1 − 1/c for both.

• The unconditional average probability of error will

then be found by averaging P(e|x) over all x:
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We should recall that the Bayes decision rule minimizes 

P(e) by minimizing P(e|x) for every x. If we let P*(e|x) 

be the minimum possible value of P(e|x), and P* be the 

minimum possible value of P(e), then

and



Convergence of the Nearest Neighbor

• If Pn(e) is the n-sample error rate, and if

then we want to show that

21x΄ is the nearest neighbor of x p(x΄|x) difficult to obtain

p(x΄|x) →δ if n→∞
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Error Rate for the Nearest-Neighbor Rule

Calculation of the conditional probability of error 

Pn(e|x, x΄).

When we say that we have n independently drawn

labelled samples, we are talking about n pairs of

random variables (x1, θ1), (x2, θ2), ..., (xn, θn), where

θj may be any of the c states of nature ω1, ..., ωc. We

assume that these pairs were generated by selecting a

state of nature ωj for θj with probability P(ωj) and

then selecting an xj according to the probability law

p(x|ωj), with each pair being selected independently.
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Since the state of nature when xj was drawn is 

independent of the state of nature when x is drawn, 

we have

If we use the nearest-neighbor decision rule, we 

commit an error whenever θ≠θ΄j.

We had
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As n goes to infinity and p(x΄|x) approaches a delta 

function.

Therefore, provided we can exchange some limits and integrals, 

the asymptotic nearest neighbor error rate is given by
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FIGURE 4.14. Bounds on the nearest-neighbor error rate P in a 

c-category problem given infinite training data, where P* is the 

Bayes error. At low error rates, the nearest-neighbor error rate is 

bounded above by twice the Bayes rate.

Error Bounds

It can be shown
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• The k–nearest-neighbor rule

– Goal: Classify x by assigning it the label most 

frequently represented among the k nearest 

samples and use a voting scheme

– The single-nearest-neighbor rule selects ωmwith 

probability P(ωm|x). The k-nearest neighbor rule 

selects ωm if a majority of the k nearest neighbors 

are labeled ωm, an event of probability

In general, the larger the value of k, the greater the probability 

that ωm will be selected.
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FIGURE 4.15. The k-nearest-neighbor query starts at the test 

point x and grows a spherical region until it encloses k training 

samples, and it labels the test point by a majority vote of these 

samples. In this k = 5 case, the test point x would be labeled the 

category of the black points.
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FIGURE 4.16. The error rate for the k-nearest-neighbor rule 

for a two-category problem is bounded by Ck(P
*) in Eq. 54. 

Each curve is labeled by k; when k =∞, the estimated 

probabilities match the true probabilities and thus the error 

rate is equal to the Bayes rate, that is, P = P*.

(54)

It can be shown that if k is odd, 

the large-sample two-class error 

rate for the k-nearest-neighbor 

rule is bounded above by the 

function Ck(P
*), where Ck(P

*) is 

defined to be the smallest 

concave function of P greater 

than the above expression.
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Example:

k = 3 (odd value) and x = (0.10, 0.25)t

Closest vectors to x with their labels are:

{(0.10, 0.28, 2); (0.12, 0.20, 2); (0.15, 0.35,1)}

One voting scheme assigns the label 2 to x since 2 is the 

most frequently represented

Prototypes Labels

(0.15, 0.35)

(0.10, 0.28)

(0.09, 0.30)

(0.12, 0.20)

1

2

1

2



Example: Digit Recognition

Yann LeCunn – MNIST Digit 

Recognition

– Handwritten digits

– 28x28 pixel images

(d = 784)

– 60,000 training samples

– 10,000 test samples

Nearest neighbor is competitive!!

Test Error Rate (%)

Linear classifier (1-layer NN) 12.0

K-nearest-neighbors, Euclidean 5.0

K-nearest-neighbors, Euclidean, 

deskewed

2.4

K-NN, Tangent Distance, 16x16 1.1

K-NN, shape context matching 0.67

1000 RBF + linear classifier 3.6

SVM deg 4 polynomial 1.1

2-layer NN, 300 hidden units 4.7

2-layer NN, 300 HU, [deskewing] 1.6

LeNet-5, [distortions] 0.8

Boosted LeNet-4, [distortions] 0.730



Example: Face Recognition

• In appearance-based face recognition, each 

person is represented by a few typical faces 

under different lighting and expression 

conditions.

• The recognition is then to decide the identify 

of a person of a given image.

• The nearest neighbor classifier could be 

used.
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Example: Face Recognition (cont’d)

• ORL dataset
– Consists of 40 subjects with 10 images each

– Images were taken at different times with different lighting conditions 

– Limited side movement and tilt, no restriction on facial expression
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Example: Face Recognition (cont’d)

• The following table shows the result of 100 trials.

# of training faces Average error rate Best error rate Worst error rate

1 30.15% 25.28% 36.67%

2 16.01% 7.81% 22.50%

3 8.04% 2.86% 17.14%

4 3.88% 0.42% 9.58%

5 2.06% 0.00% 5.50%
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3D Object Recognition

• COIL Dataset

34



3D Object Recognition (cont’d)

Methods 36/36 18/54 8/64 4/68

Spectral histogram 0.08% 0.67% 4.67% 10.71%

Spectral histogram  without 

background
0.00% 0.13% 1.89% 7.96%

SNoW (Yang et al.,2000) 4.19% 7.69% 14.87% 18.54%

Linear SVM (Yang et al.,2000) 3.97% 8.70% 15.20% 21.50%

Nearest Neighbor (Yang et al.,2000) 1.50% 12.46% 20.52% 25.37%

Training/test views
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Computational complexity

(nearest-neighbor rule)

• Assuming n training examples in d dimensions, a 

straightforward implementation would take O(dn)

• A parallel implementation would take O(1)
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Reducing computational complexity

• Three generic approaches:

– Computing partial distances

– Pre-structuring (e.g., search tree)

– Editing the stored prototypes

37



Partial distances

• Compute distance using first r dimensions only:

where r<d.

• If the partial distance is too great (i.e., greater than 

the distance of x to current closest prototype), 

there is no reason to compute additional terms.

2 1/ 2

1

( , ) ( ( ) )
r

r k k

k

D x x


  x x
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Pre-structuring: Bucketing

• In the Bucketing algorithm, the space is 

divided into identical cells. 

– For each cell the data points inside it are 

stored in a list.

– Given a test point x, find the cell that 

contains it.

– Search only the points inside that cell!

– Does not guarantee to find the true nearest 

neighbor(s) !
39



Pre-structuring: Bucketing (cont’d)

1/4 3/4

1/4

3/4

search this 

cell only!

40



Pre-structuring: Bucketing (cont’d)

Tradeoff:

– speed vs accuracy 

41



Pre-structuring: Search Trees

(k-d tree)

• A k-d tree is a data structure for storing a 

finite set of points from a k-dimensional 

space.

• Generalization of binary search ...

• Goal: hierarchically decompose space 

into a relatively small number of cells 

such that no cell contains too many 

points.
42



Pre-structuring: Search Trees

(k-d tree) (cont’d)

input output

43



Pre-structuring: Search Trees

(how to build a k-d tree)

• Each internal node in a k-d tree is associated 

with a hyper-rectangle and a hyper-plane

orthogonal to one of the coordinate axis.

– The hyper-plane splits the hyper-rectangle into two 

parts, which are associated with the child nodes.

– The partitioning process goes on until the number 

of data points in the hyper-rectangle falls below

some given threshold.
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Pre-structuring: Search Trees

(how to build a k-d tree) (cont’d)

splits along y=5

splits along x=3
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Pre-structuring: Search Trees

(how to build a k-d tree) (cont’d)
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Pre-structuring: Search Trees

(how to search using k-d trees)

• For a given query point, the algorithm 

works by first descending the tree to find 

the data points lying in the cell that contains 

the query point.

• Then it examines surrounding cells if they 

overlap the ball centered at the query point 

and the closest data point so far.

http://www-2.cs.cmu.edu/~awm/animations/kdtree/nn-vor.ppt
47
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Pre-structuring: Search Trees

(how to search using k-d trees) (cont’d)

no need to search ...search ...
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Pre-structuring: Search Trees

(how to search using k-d trees) (cont’d)
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Pre-structuring: Search Trees

(how to search using k-d trees) (cont’d)

50



*Editing

• Goal: reduce the number of training 

samples.

• Two main approaches:

– Condensing: preserve decision boundaries.

– Pruning: eliminate noisy examples to 

produce smoother boundaries and improve 

accuracy. 
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* Editing using condensing

• Retain only the samples that are needed to 

define the decision boundary.

• Decision Boundary Consistent – a subset whose 

nearest neighbour decision boundary is close to 

the boundary of the entire training set.

• Minimum Consistent Set – the smallest subset of 

the training data that correctly classifies all of the 

original training data.
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* Editing using condensing (cont’d)

• Retain mostly points along the decision 

boundary.

Original data Condensed data

Minimum Consistent Set
53



* Editing using condensing (cont’d)

• Keep points contributing to the boundary (i.e., at least 

one neighbor belongs to a different category).

• Eliminate prototypes that are surrounded by samples of 

the same category.
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* Editing using condensing (cont’d)

can be eliminated!
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* Editing using pruning

• Pruning seeks to remove “noisy” points

and produces smooth decision 

boundaries.

• Often, it retains points far from the 

decision boundaries.

• Wilson pruning: remove points that do 

not agree with the majority of their k-

nearest-neighbours.
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* Editing using pruning (cont’d)

Wilson editing with k=7

Original data

Wilson editing with k=7

Original data
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* Combined Editing/Condensing

(1) Prune the data to remove noise and smooth the boundary.

(2) Condense to obtain a smaller subset.
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Nearest Neighbor Embedding

• Map the training examples to a low 

dimensional space such that distances 

between training examples are preserved 

as much as possible.

– i.e., reduce d and at the same time keep all 

the nearest neighbors in the original space.
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Example: 3D hand pose estimation

query

Database (107,328 images)

nearest

neighbor

Athitsos and Sclaroff. Estimating 3D Hand Pose from a Cluttered Image, CVPR 2004
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General comments 

(nearest-neighbor classifier)

• The nearest neighbor classifier provides 

a powerful tool.

– Its error is bounded to be at most two times

of the Bayes error (in the limiting case).

– It is easy to implement and understand.

– It can be implemented efficiently.

– Its performance, however, relies on the 

metric used to compute distances!
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Properties of distance metrics
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Metrics and Nearest-Neighbor 

Classification

• A metric D(·, ·) is merely a function that gives a 

generalized scalar distance between two argument 

patterns.

• Euclidean formula for distance in d dimensions

• Minkowski metric (Lk norm)

63



64

The L1 norm is sometimes called the Manhattan or 

city block distance, the shortest path between a and b, 

each segment of which is parallel to a coordinate axis.

Figure 4.19: Each colored surface

consists of points a distance 1.0

from the origin, measured using

different values for k in the

Minkowski metric (k is printed in

red). Thus the white surfaces

correspond to the L1 norm

(Manhattan distance), light gray the

L2 norm (Euclidean distance), dark

gray the L4 norm, and red the L∞

norm.
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Todeschini (1989) assesses six global metrics (Table 4.1) on 10 

datasets after four ways of standardizing the data (Table4.2). The 

maximum scaling standardization procedure performed well, and 

was found to be robust to the choice of distance metric.
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The Tanimoto metric finds most use in taxonomy, where the 

distance between two sets is defined as

where n1 and n2 are the number of elements in sets S1 and S2, 

respectively, and n12 is the number that is in both sets.

* Tangent distance

There may be drawbacks inherent in the uncritical use 

of a particular metric in nearest-neighbor classifiers, 

and these drawbacks can be overcome by the careful 

use of more general measures of distance.

Tanimoto metric 
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Figure 4.20: The uncritical use of Euclidean metric cannot address the

problem of translation invariance. Pattern x represents a handwritten 5, and

x΄(s = 3) the same shape but shifted three pixels to the right. The Euclidean

distance D(x΄, x΄(s = 3)) is much larger than D(x΄, x8), where x8 represents

the handwritten 8. Nearest-neighbor classification based on the Euclidean

distance in this way leads to very large errors. Instead, we seek a distance

measure that would be insensitive to such translations, or indeed other

known invariances, such as scale or rotation.



* Distance metrics - Invariance

• How to deal with transformations?

– Normalize data (e.g., shift center to a fixed 

location)

– More difficult to normalize with respect to 

rotation and scaling ...

– How to find the rotation/scaling factors?
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Suppose we believe there are r transformations

applicable to our problem, such as horizontal

translation, vertical translation, shear, rotation, scale,

and line thinning.

During construction of the classifier we take each stored

prototype x΄ and perform each of the transformations Fi(x΄; αi)

on it. Thus Fi (x΄; αi) could represent the image described by

x΄, rotated by a small angle αi. We then construct a tangent

vector TVi for each transformation:

TVi = Fi (x΄; αi) − x΄.

While such a transformation may be compute intensive — as,

for instance, the line thinning transform — it need be done

only once, during training when computational constraints are

lax. In this way we construct for each prototype x΄ an r × d

matrix T, consisting of the tangent vectors at x΄.
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1 1 2 2x̂ x a TV a TV   
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Figure 4.21: The pixel image of the handwritten 5

prototype at the lower left was subjected to two

transformations, rotation, and line thinning, to obtain the

tangent vectors TV1 and TV2; images corresponding to these

tangent vectors are shown outside the axes. Each of the 16

images within the axes represents the prototype plus linear

combination of the two tangent vectors with coefficients a1

and a2. The small red number in each image is the

Euclidean distance between the tangent approximation and

the image generated by the unapproximated

transformations. Of course, this Euclidean distance is 0 for

the prototype and for the cases a1 = 1, a2 = 0 and a1 = 0, a2

= 1. (The patterns generated with a1 + a2 > 1 have a gray

background because of automatic grayscale conversion of

images with negative pixel values.)
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Now we turn to computing the tangent distance from a test 

point x to a particular stored prototype x΄. Formally, given a 

matrix T consisting of the r tangent vectors at x΄, the tangent 

distance from x΄ to x is:

i.e., the Euclidean distance from x to the tangent space of x΄.

During classification of x we will find its tangent distance to

x΄ by finding the optimizing value of a required by above eq.

.

.

.



74

• Fuzzy Classification …

• Approximations by Series Expansions ...

• Relaxation methods …



Relaxation methods

• Parzen-window method uses a fixed window 

throughout the feature space, and that this could lead 

to difficulties: in some regions a small window width 

was appropriate while elsewhere a large one would be 

best. 

• The k-nearest neighbor method addressed this 

problem by adjusting the region based on the density 

of the points.

• Another approach that is intermediate between these 

two is to adjust the size of the window during training 

according to the distance to the nearest point of a 

different category. → relaxation techniques.
75
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One representative method — called the Reduced 

Coulomb Energy or RCE network — has the form 

shown in the next Fig.

1 begin initialize j ← 0, n ← #patterns, 

ε ← small param, λm ← max radius

2 do j ← j + 1

3 train weight: wij ← xi

4 find nearest point not in ωk: 

5 set radius

6 if x ωk then ajk ← 1

7 until j = n

8 end

),(minargˆ xxx
x




D
k

Algorithm 4 (RCE training)


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Algorithm 5 (RCE classification)

Let λj be the radius around stored prototype xj and now let 

Dt be the set of stored prototypes in whose hypershperes 

test point x lies, then our classification algorithm is 

written as:
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Figure 4.25: An RCE network is topologically equivalent to

the PNN. During training the weights are adjusted to have

the same values as the pattern presented, just as in a PNN.

However, pattern units in an RCE network also have a

modifiable “radius” parameter λ. During training, each λ is

adjusted so that the region is as large as possible without

containing training patterns from a different category.
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Figure 4.26: During training, each

pattern has a parameter —

equivalent to a radius in the d-

dimensional space — that is adjusted to

be as large as possible, without

enclosing any points from a different

category. As new patterns are

presented, each such radius is

decreased accordingly (and can never

increase). In this way, each pattern

unit can enclose several prototypes,

but only those having the same

category label. The number of

points is shown in each component

figure. The figure at the bottom

shows the final complicated decision

regions, colored by category.


