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Chapter 4 (Part 1):

Non-Parametric 

Classification

• Introduction

• Density Estimation

• Parzen Windows

All materials used in this course were taken from the textbook “Pattern Classification” by Duda et al., John Wiley & Sons, 2001 

with the permission of the authors and the publisher
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• Introduction

– All Parametric densities are unimodal (have a single 

local maximum), whereas many practical problems 

involve multi-modal densities.

Nonparametric procedures can be used with 

arbitrary distributions and without the assumption 

that the forms of the underlying densities are 

known.

– There are two types of nonparametric methods:

• Estimating P(x|j)

• Bypass probability and go directly to a-posteriori 

probability estimation
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• Basic idea:

Probability that a vector x will fall in region R is:

P is a smoothed (or averaged) version of the density function 
p(x) if we have a sample of size n; therefore, the probability 

that k points fall in R is then:

and the expected and variance value for k is:

E(k) = nP  , Var(k)=nP(1-P)               (3)
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What is ML estimation of  P = ?

is reached for                     (4)

• Therefore, the ratio k/n is a good estimate for the 

probability P and hence for the density function p. 

• If p(x) is continuous and that the region R is so small 

that p does not vary significantly within it, we can 

write:

where x is a point within R and V the volume enclosed by R.
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FIGURE 4.1. The relative probability an estimate given by Eq. 4 will yield a 

particular value for the probability density, here where the true probability 

was chosen to be 0.7. Each curve is labeled by the total number of patterns n 

sampled, and is scaled to give the same maximum (at the true probability). 

The form of each curve is binomial, as given by Eq. 2. For large n, such 

binomials peak strongly at the true probability. In the limit n → ∞, the curve 

approaches a delta function, and we are guaranteed that our estimate will give 

the true probability.
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• Density Estimation (cont’d)

– Justification of equation (5)

We assume that p(x) is continuous and that region 

R is so small that p does not vary significantly 

within R. Since p(x) = constant, it is not a part of 

the sum.
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http://www.krellinst.org/UCES/archive/modules/potential/quad/rrr.gif
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Where: (R) is: a length in R
a surface in R 2

a volume in R 3

a hypervolume in R n

Since p(x)  p(x΄) = constant, therefore in R 3:
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• Condition for convergence

The fraction k/(nV) is a space averaged value of p(x).

p(x) is obtained only if V approaches zero.

This is the case where no samples are included in R: it 
is an uninteresting case!

In this case, the estimate diverges: it is an 
uninteresting case!
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The volume V needs to approach 0 anyway if we want to use 
this estimation

– Practically, V cannot be allowed to become small since the 
number of samples is always limited

– One will have to accept a certain amount of variance in the 
ratio k/n

– Theoretically, if an unlimited number of samples is available, 
we can circumvent this difficulty

To estimate the density of x, we form a sequence of regions

R1, R2,…containing x: the first region contains one sample, the 
second two samples and so on.

Let Vn be the volume of Rn, kn the number of samples falling in 
Rn and pn(x) be the nth estimate for p(x):
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Three necessary conditions should apply if we want pn(x) to 

converge to p(x):

There are two different ways of obtaining sequences of regions 

that satisfy these conditions:

(a) Fix the volume Vn and determine kn from the data. Shrink an 

initial region where Vn = 1/n and show that 

This is called “the Parzen-window estimation method”

(b) Fix the value of kn and determine the corresponding volume

Vn from the data. Specify kn as some function of n, such as kn =

n; the volume Vn is grown until it encloses kn neighbors of x.

This is called “the kn-nearest neighbor estimation method”
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FIGURE 4.2. There are two leading methods for estimating the

density at a point, here at the center of each square. The one shown

in the top row is to start with a large volume centered on the test

point and shrink it according to a function such as Vn=1/n. The

other method, shown in the bottom row, is to decrease the volume

in a data-dependent way, for instance letting the volume enclose

some number kn = n of sample points. The sequences in both

cases represent random variables that generally converge and allow

the true density at the test point to be calculated.
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• Parzen Windows (Kernel Density Estimation)

– Parzen-window approach to estimate densities 

assume that the region Rn is a d-dimensional 

hypercube

– ((x-xi)/hn) is equal to unity if xi falls within the 

hypercube of volume Vn centered at x and equal to 

zero otherwise.

n ( :  length of the edge of )
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1
1       1,... , 

( ) 2

0   otherwise 

d

n n n

j

V h h

Let

u j d

u

u





 


 

 





13

• The number of samples in this hypercube is:

By substituting kn in equation (7), we obtain the 
following estimate:

pn(x) estimates p(x) as an average of functions of x and 

the samples (xi) (i=1, …, n). 
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• The density estimate is a superposition of 

kernel functions and the samples xi.

• interpolates the density between samples.

• Each sample xi contributes to the estimate 

based on its distance from x.
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Properties of             

• The kernel function           can have a more 

general form (i.e., not just hypercube).

• In order for pn(x) to be a legitimate estimate 

(nonnegative and integrate to one)         ,         

must be a valid density itself: 
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Effect of the window width hn on pn(x)

If we define the function δn(x) by

then we can write pn(x) as the average

Since Vn = hn
d, hn clearly affects both the amplitude and 

the width of δn(x) (Fig. 4.3).

Thus, as hn approaches zero, δn(x−xi) approaches a Dirac 

delta function centered at xi, and pn(x) approaches a 

superposition of delta functions centered at the samples.

n

n n

1
( ) ( )

V h
 

x
x

n

n n

1

1
( ) ( ).i

i

p
n




 x x x



17

FIGURE 4.3. Examples of two-dimensional circularly

symmetric normal Parzen windows for three different values of

h. Note that because the δ(x) are normalized, different vertical

scales must be used to show their structure.

If hn is very large, the amplitude of δn is small, and pn(x) is

the superposition of n broad, slowly changing functions and

is a very smooth “out-of-focus” estimate of p(x).
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FIGURE 4.4. Three Parzen-window density estimates

based on the same set of five samples, using the window

functions in Fig. 4.3. As before, the vertical axes have been

scaled to show the structure of each distribution.

If hn is very small, the peak value of δn (x−xi) is large and

occurs near x = xi. In this case p(x) is the superposition of n

sharp pulses centered at the samples — an erratic, “noisy”

estimate.
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If Vn is too large, the estimate will suffer from too little

resolution; if Vn is too small, the estimate will suffer

from too much statistical variability. With a limited

number of samples, the best we can do is to seek some

acceptable compromise. However, with an unlimited

number of samples, it is possible to let Vn slowly

approach zero as n increases and have pn(x) converge

to the unknown density p(x).

Refer to the textbook for the proof of the convergence of the mean and variance

conditions

- φ(u) must be well-behaved.

- Vn  0 at a rate lower than 1/n



Expected Value/Variance

of estimate pn(x)

• The expected value of the estimates approaches p(x) 

as :

• The variance of the estimate is given by:

• The variance can be decreased by allowing 
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• Illustration
• The behavior of the Parzen-window method

• Case where p(x) N(0,1)

Let (u) = (1/(2) exp(-u2/2) and hn = h1/n (n>1) 

(h1: known parameter)

Thus:

is an average of normal densities centered at the samples xi.
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Probability density with different levels of smoothing (h = 0.2 and h = 0.5).
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FIGURE 4.5. Parzen-window estimates of a univariate normal density using different

window widths and numbers of samples. The vertical axes have been scaled to best

show the structure in each graph. Note particularly that the n = ∞ estimates are the same

(and match the true density function), regardless of window width.
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FIGURE 4.6. Parzen-

window estimates of a 

bivariate normal 

density using different 

window widths and 

numbers of samples. 

The vertical axes have 

been scaled to best 

show the structure in 

each graph. Note 

particularly that the 

n=∞ estimates are the 

same (and match the 

true distribution), 

regardless of window 

width.



28

Figure 2.25 Illustration of the kernel density model .We see that h acts as a 

smoothing parameter and that if it is set too small (top panel), the result is a 

very noisy density model, whereas if it is set too large (bottom panel), then 

the bimodal nature of the underlying distribution from which the data is 

generated (shown by the green curve) is washed out. The best density 

model is obtained for some intermediate value of h (middle panel).
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• Case where p(x) = 1.U(a,b) + 2.T(c,d) (unknown 
density) (mixture of a uniform and a triangle density)

FIGURE 4.7. Parzen-

window estimates of a

bimodal distribution using

different window widths

and numbers of samples.

Note particularly that the

n=∞ estimates are the same

(and match the true

distribution), regardless of

window width.



• In classifiers based on Parzen-window estimation:

– We estimate the densities for each category and 

classify a test point by the label corresponding to 

the maximum posterior

– The decision region for a Parzen-window classifier 

depends upon the choice of window function as 

illustrated in the following figure.

30

Classification using kernel-based 

density estimation
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FIGURE 4.8. The decision boundaries in a two-dimensional Parzen-

window dichotomizer depend on the window width h. At the left a small 

h leads to boundaries that are more complicated than for large h on same 

data set, shown at the right. Apparently, for these data a small h would be 

appropriate for the upper region, while a large h would be appropriate for 

the lower region; no single window width is ideal overall.

very low error on training examples Better generalization



Parzen classifier
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Parzen classifier
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Drawbacks of kernel-based methods

• Require a large number of samples.

• Require all the samples  to be stored.

• Evaluation of the density could be very slow if the 

number of data points is large.

• Possible solution: use fewer kernels and adapt the 

positions and widths in response to the data (e.g., 

mixtures of Gaussians!)

34

Example  from Dr Khotanzad’s lecture notes (p144)
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• Parzen Window (cont.)

– Parzen Window – Probabilistic Neural Network

• Compute a Parzen estimate based on n patterns

– Patterns with d features sampled from c classes

– The input unit is connected to n patterns
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• Training the network →Algorithm

1. Normalize each pattern x of the training set to 1,

2. Place the first training pattern on the input units

3. Set the weights linking the input units and the first 
pattern units such that: w1 = x1

4. Make a single connection from the first pattern unit 
to the category unit corresponding to the known 
class of that pattern

5. Repeat the process for all remaining training 
patterns by setting the weights such that 

wk = xk (k = 1, 2, …, n)

We finally obtain the following network
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FIGURE 4.9. A probabilistic neural network (PNN) consists of d input units, n

pattern units, and c category units. Each pattern unit forms the inner product of its

weight vector and the normalized pattern vector x to form z = wt x, and then it emits

exp[(z − 1)/σ2]. Each category unit sums such contributions from the pattern unit

connected to it. This ensures that the activity in each of the category units represents

the Parzen-window density estimate using a circularly symmetric Gaussian window

of covariance σ2I, where I is the d ×d identity matrix.
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• Testing the network

– Algorithm

1. Normalize the test pattern x and place it at the input units

2. Each pattern unit computes the inner product in order to 
yield the net activation

and emit a nonlinear function

– That is, if we let our effective width h be a constant, 

the window function is
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3. Each output unit sums the contributions from 
all pattern units connected to it

4.  Classify by selecting the maximum value of 
pn(x|j) (j = 1, …, c)
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Benefits of PNNs

• Speed of learning; requires only a single pass 

through the training data.

• The space complexity; O((n+1)d). The time 

complexity for classification by the parallel 

implementation is O(1).

• New training patterns can be incorporated into 

a previously trained classifier quite easily;
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Choosing the window function

• One of the problems encountered in the Parzen-
window/PNN approach concerns the choice of the 
sequence of cell volumes sizes V1, V2, ... or overall 
window size (or indeed other window parameters, 
such as shape or orientation).

• If we take Vn = V1/n, the results for any finite n will 
be very sensitive to the choice for the initial vol. V1.

• If V1 is too small, most of the volumes will be empty, 
and the estimate pn (x) will be very erratic. 

• On the other hand, if V1 is too large, important spatial 
variations in p(x) may be lost due to averaging over 
the cell volume.


