
• Markov Chains

– Goal: make a sequence of decisions

• Processes that unfold in time, states at time t are influenced 
by a state at time t-1

• Applications: speech recognition, gesture recognition, parts 
of speech tagging and DNA sequencing, 

• Any temporal process without memory

T = {(1), (2), (3), …, (T)} sequence of states

We might have 6 = {1, 4, 2, 2, 1, 4} 

• The system can revisit a state at different steps and not every 
state need to be visited

Ch3-p6: Hidden Markov Models
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• First-order Markov models

– Our productions of any sequence is described by 

the transition probabilities; the time-independent 

probability of having state ωj at step t + 1 given 

that the state at time t was ωi

P(j(t + 1) | i (t)) = aij      (aij ≠ aji, in general)
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Figure 3.9: The discrete states, ωi, in a basic Markov 

model are represented by nodes, and the transition 

probabilities, aij , by links. In a first-order discrete time 

Markov model, at any step t the full system is in a 

particular state ω(t). The state at step t+1 is a random 

function that depends solely on the state at step t and 

the transition probabilities. 3



We are given a particular model  = (aij, 
T) →

P(6 | ) = a14 . a42 . a22 . a21 . a14 . P((1) = 1)

Example: speech recognition

“production of spoken words”

Production of the word: “pattern” represented by phonemes

/p/ /a/ /tt/ /er/ /n/ // ( // = silent state)

Transitions from /p/ to /a/, /a/ to /tt/, /tt/ to er/, /er/ to /n/ and 
/n/ to a silent state

– visible states: states  which are directly 
accessible to external measurement

6 = {1, 4, 2, 2, 1, 4} 
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Hidden Markov Model: Extension of 

Markov Chains

• We define particular sequence of such visible states 

as VT = {v(1), v(2), ..., v(T)} and thus we might have 

V6 = {v5, v1, v1, v5, v2, v3}. 

Because we have access only to the visible states, 

while the ωi are unobservable, such a full model is 

called a Hidden Markov Model.

Thus, a hidden Markov model is a standard Markov 

process augmented by a set of measurable states and 

several probabilistic relations between those states 

and the hidden states.
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Figure 3.10: Three hidden units in an HMM and the transitions 

between them are shown in black while the visible states and the 

emission probabilities of visible states are shown in red. This 

model shows all transitions as being possible; in other HMMs, 

some such candidate transitions are not allowed.
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• Markov networks are strictly causal — the 

probabilities depend only upon previous states. 

A Markov model is called ergodic if every one 

of the states has a non-zero probability of 

occurring given some starting state.

• A final or absorbing state ω0 is one which, if 

entered, is never left (i.e., a00 = 1).

Hidden Markov Model Computation
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where the limits on the summations are over all 

hidden states and all visible symbols, respectively.

• 3 problems are associated with this model

• The evaluation problem

• The decoding problem

• The learning problem
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• The Evaluation problem. Suppose we have an 
HMM, complete with transition probabilities aij and 
bjk. Determine the probability that a particular 
sequence of visible states VT was generated by that 
model.

• The Decoding problem. Suppose we have an HMM 
as well as a set of observations VT. Determine the 
most likely sequence of hidden states ωT that led to 
those observations.

• The Learning problem. Suppose we are given the 
coarse structure of a model (the number of states and 
the number of visible states) but not the probabilities 
aij and bjk. Given a set of training observations of 
visible symbols, determine these parameters.
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• The evaluation problem

The probability that the model produces a 

sequence VT of visible states is:

c # of hidden states

where each r indexes a particular sequence
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Using equations (1) and (2), we can write:

Interpretation: The probability that we observe the
particular sequence of T visible states VT is equal to the
sum over all rmax possible sequences of hidden states of
the conditional probability that the system has made a
particular transition multiplied by the probability that it
then emitted the visible symbol in our target sequence.
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This is an O(cTT) calculation, which is quite 

prohibitive in practice. For instance, if c = 10 and

T = 20, we must perform on the order of 1021

calculations!!!
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Example: Let 1, 2, 3 be the hidden states; v1, v2, v3 be the visible 

states  and V3 = {v1, v2, v3} is the sequence of visible states

P({v1, v2, v3}|) = P(1).P(v1 | 1).P(2 | 1).P(v2 | 2).P(3 | 2).P(v3 | 3) 

+P(2).P(v1 | 2).P(3 | 2).P(v2 | 3).P(1 | 3).P(v3 | 1)+…+   (possible terms 

in the sum = all possible (33= 27) cases !)
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Rain Dry

0.70.3

0.2 0.8

• Two states : ‘Rain’ and ‘Dry’.

• Transition probabilities: P(‘Rain’|‘Rain’)=0.3 , 

P(‘Dry’|‘Rain’)=0.7 , P(‘Rain’|‘Dry’)=0.2, P(‘Dry’|‘Dry’)=0.8

• Initial probabilities: say P(‘Rain’)=0.4 , P(‘Dry’)=0.6 .

Example of Markov Model
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• By Markov chain property, probability of state sequence can be 

found by the formula:

• Suppose we want to calculate a probability of a sequence of 

states in our example,  {‘Dry’, ‘Dry’, ‘Rain’, ‘Rain’}. 

P({‘Dry’, ‘Dry’, ‘Rain’, ‘Rain’} ) =

P(‘Rain’|‘Rain’) P(‘Rain’|‘Dry’) P(‘Dry’|‘Dry’) P(‘Dry’)=

= 0.3×0.2×0.8×0.6=0.0288

Calculation of sequence probability
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Low High

0.70.3

0.2 0.8

DryRain

0.6 0.6
0.4 0.4

Example of Hidden Markov Model

15



• Two states : ‘Low’ and ‘High’ atmospheric pressure.

• Two observations : ‘Rain’ and ‘Dry’.

• Transition probabilities: P(‘Low’|‘Low’)=0.3 , 

P(‘High’|‘Low’)=0.7 , P(‘Low’|‘High’)=0.2, 

P(‘High’|‘High’)=0.8

• Observation probabilities : P(‘Rain’|‘Low’)=0.6 , 

P(‘Dry’|‘Low’)=0.4 , P(‘Rain’|‘High’)=0.4 , 

P(‘Dry’|‘High’)=0.3 .

• Initial probabilities: say P(‘Low’)=0.4 , P(‘High’)=0.6 .

Example of Hidden Markov Model
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• Suppose we want to calculate a probability of a sequence of  

observations in our example,  {‘Dry’,’Rain’}.

• Consider all possible hidden state sequences: 

P({‘Dry’,’Rain’} ) = P({‘Dry’,’Rain’} , {‘Low’,’Low’}) + 

P({‘Dry’,’Rain’} , {‘Low’,’High’}) + P({‘Dry’,’Rain’} , 

{‘High’,’Low’}) + P({‘Dry’,’Rain’} , {‘High’,’High’}) 

where first term is : 

P({‘Dry’,’Rain’} , {‘Low’,’Low’})= 

P({‘Dry’,’Rain’} | {‘Low’,’Low’})  P({‘Low’,’Low’}) = 

P(‘Dry’|’Low’)P(‘Rain’|’Low’) P(‘Low’)P(‘Low’|’Low’)

= 0.4×0.4×0.6×0.4×0.3=0.01152

Calculation of observation sequence probability
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A computationally simpler algorithm for the same goal 

is as follows. 

We can calculate P(VT) recursively, since each term 

P(v(t)|ω(t))P(ω(t)|ω(t − 1)) involves only v(t), ω(t) and 

ω(t − 1). We do this by defining forward variable αj(t)

bjk(v(t)) means the transition probability bjk selected by

the visible state emitted at time t. Thus the only non-

zero contribution to the sum is for the index k which

matches the visible state v(t).
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Efficient Calculations: Forward-Backward algorithms 
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Thus αj(t) represents the probability that our HMM is in 

hidden state ωj at step t having generated the first t 

elements of VT i.e. αj(t) =P(v(1), v(2), …, v(t),ωj (t) |Θ)

α0 denotes the probability of the associated sequence 

ending to the known final state.

It is O(c2T). For c = 10, T = 20 → 2000 calculations

 ( )v t
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i(t)= P(model will gen. the seq. from t+1 to T given i(t)) 

=P(v(t+1), v(t+2), …, v(T) | ωi (t), Θ)

where
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Figure 3.11: The computation of probabilities by the 

Forward algorithm can be visualized by means of a 

trellis — a sort of “unfolding” of the HMM through 

time. Suppose we seek the probability that the HMM 

was in state ω2 at t = 3 and generated the observed 

visible up through that step (including the observed 

visible symbol vk). The probability the HMM was in 

state ωj (t = 2) and generated the observed sequence 

through t = 2 is αj(2) for j = 1, 2, ..., c. To find α2(3) we 

must sum these and multiply the probability that state 

ω2 emitted the observed symbol vk. Formally, for this 

particular illustration we have
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Example 4:Hidden Markov Model

Consider an HMM such as shown in Fig. 3.10, but 

with an explicit absorber state and unique null visible 

symbol v0 with the following transition probabilities 

(where the matrix indexes begin at 0):
aij ω0 ω1 ω2 ω3

ω0 1 0 0 0

ω1 0.2 0.3 0.1 0.4

ω2 0.2 0.5 0.2 0.1

ω3 0.8 0.1 0 0.1

bjk v0 v1 v2 v3 v4

ω0 1 0 0 0 0

ω1 0 0.3 0.4 0.1 0.2

ω2 0 0.1 0.1 0.7 0.1

ω3 0 0.5 0.2 0.1 0.2 23



What is the probability it generates the particular sequence

V5 = {v3, v1, v3, v2, v0}?
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Figure: The HMM (above) consists of four hidden states (one of which 

is an absorber state, ω0), each emitting one of five visible states; only 

the allowable transitions to visible states are shown. The trellis for this 

HMM is shown below. In each node is αi(t)—the probability the model 

generated the observed visible sequence up to t. For instance, we know 

that the system was in hidden state ω1 at t = 1, and thus α1(0) = 1 and αi 

(0) = 0 for i ≠ 1. The arrows show the calculation of αi(1). For instance, 

since visible state v1 was emitted at t = 1, we have α0(1) = α1(0)a10b10 = 

1[0.2 × 0] = 0 as shown by the top arrow. Likewise the next highest 

arrow corresponds to the calculation ω1(1)=α1(0)a11b11=1[0.3×0.3] = 

0.09. In this example, the calculation of αi(1) is particularly simple, 

since only transitions from the known initial hidden state need be 

considered; all other transitions have zero contribution to αi(1). For 

subsequent times, however, the calculation requires a sum over all 

hidden states at the previous time, as given by line 3 in the Forward 

algorithm. The probability shown in the final (absorbing) state gives the 

probability of the full sequence observed, P(VT |θ) = 0.0011.
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If we denote our model - the a’s and b’s - by θ, we have

by Bayes’ formula

In HMM pattern recognition we would have a number 

of HMMs, one for each category and classify a test 

sequence according to the model with the highest 

probability.

The Forward algorithm gives us P(VT |θ).

The prior probability of the model, P(θ), is given by 

some external source, such as a language model in the 

case of speech.
26



Figure 3.12: A left-to-right HMM commonly used in 

speech recognition. For instance, such a model could 

describe the utterance “viterbi,” where ω1 represents the 

phoneme /v/, ω2 represents /i/, ..., and ω0 a final silent 

state. Such a left-to-right model is more restrictive than 

the general HMM in Fig. 3.11, and preclude transitions 

“back” in time.
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ECE 8443: Lecture 12, Slide 28

Normalization is Important

• Normalization is required to avoid such recursive algorithms from accumulating large 

amounts of computational noise.

• We can apply a normalization factor at each step of the calculation:

where the scale factor, Q, is given by:

• This is applied once per state per unit time, and simply involves scaling the current ’s

by their sum at each epoch (e.g., a frame).

• Also, likelihoods tend to zero as time increases and can cause underflow. Therefore, it is 

more common to operate on log probabilities to maintain numerical precision . This 

converts products to sums but still involves essentially the same algorithm (though an 

approximation for the log of a sum is used to compute probabilities involving the 

summations).

 
 





t

i

i

j

j

Q

t
t

0




  10

1




QtQ
c

i

ii 



Classification Using HMMs

If we concatenate our HMM parameters into a single vector, , we 

can write Bayes formula as:

 
   

)( T

T

T

P

PP
P

v

θθv
vθ 

The forward algorithm gives us  θvTP

•We ignore the denominator term (evid.) during the maximization. 

•In some applications, we use domain knowledge to compute P(). 

For example, in speech recognition, this most often represents the 

probability of a word or sound, which comes from a “language 

model.” It is also possible to use HMMs to model P() (e.g., 

statistical language modeling in speech recognition).

•In a typical classification application, there are a set of HMMs, one 

for each category, and the above calculation is performed for each 

model (i).29



• The decoding problem (optimal state 

sequence)

Given a sequence of visible states VT, the decoding 

problem is to find the most probable sequence of 

hidden states, which is called maximum a posteriori 

(MAP) estimate of the state sequence.

This problem can be expressed mathematically as:

find the single “best” state sequence (hidden states)
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Note that the summation disappeared, since we want to find only one 

unique best case !
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Where:      λ= = [, A, B]     is an HMM

 = P((1)) (initial state probability)

A = aij = P((t+1) = j | (t) = i)

B = bjk = P(v(t) = k | (t) = j)
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πi is the probability that the model is in state ωi at the time t=0. 31



Algorithm 4: (HMM Decoding)

Viterbi Algorithm

O(cTT) calculation → O(c2T)
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FIGURE 3.13. Viterbi Decoding Trellis: The decoding 

algorithm finds at each time step t the state that has the 

highest probability of having come from the previous 

step and generated the observed visible state vk. The 

full path is the sequence of such states. Because this is 

a local optimization (dependent only upon the single 

previous time step, not the full sequence), the 

algorithm does not guarantee that the path is indeed 

allowable. For instance, it might be possible that the 

maximum at t = 5 is ω1 and at t=6 is ω2, and thus these 

would appear in the path. This can even occur if a12 = 

P(ω2 (t + 1)|ω1 (t )) = 0, precluding that transition.
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Example 5:HMM decoding

We find the path for the data of Example 4 for the 

sequence {ω1, ω3, ω2, ω1, ω0}. Note especially that the 

transition from ω3 to ω2 is not allowed according to 

the transition probabilities aij given in Example 4. The 

path locally optimizes the probability through the 

trellis.
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• The learning problem (parameter estimation)

This third problem consists of determining a method to adjust 
the model parameters  = [, A, B] to satisfy a certain 
optimization criterion. We need to find the best model 

Such that to maximize the probability of the observation 
sequence:

We use an iterative procedure such as Baum-Welch (Forward-
Backward) or Gradient to find this local optimum

]ˆ,ˆ,ˆ[ˆ BAπΘ 

( | )TMax P
Θ

V Θ
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• i(t)= P(model generates visible sequence

up to step t given hidden state i(t))

• i(t)= P(model will generate the sequence

from t+1 to T given i(t)) 

By the definition of βi(T) in the above Eq., this will be either 

0 (if ωi(T) is not the final hidden state) or 1 (if it is). Thus it is 

clear that βi(T −1) =∑ 
j
aijbjkv(T)βj(T). 

But the αi(t) and βi(t) we determined are merely estimates of 

their true values, since we don’t know the actual value of the 

transition probabilities aij and bjk in the above Eq.
37



 ( ) ( ) | ,i it p t  V θWe now define a posteriori probability

which is the probability of being in state i at time t for the state 

sequence V. Note that:
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Also note that because of Markovian conditional independence:
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We also define  ( ) ( ), ( 1) | ,ij i jt p t t    V θ

which is the probability of being in state i at time t and being in 

state j at time t+1 given the model generated the entire training

sequence VT by any path.
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This can also be expanded as:
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If we sum these quantities across time, we can get some useful 

values i.e., the expression
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is the expected number of times in state i and therefore is the

expected number of transitions away from state i. Similarly,
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is the expected number of transitions from state i to state j for 

V. These follow from the fact that
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Where It(i) is an indicator random variable that is 1 when we are in 

state i at time t and It(i,j) is a random variable that is 1 when we 

move from state i to statej after time t. 41



Thus (the estimate of the probability of a transition

from ωi(t−1) to ωj(t)) can be found by taking the ratio

between the expected number of transitions from ωi

to ωj and the total expected number of any transitions

from ωi.
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We can obtain an improved estimate     by calculating 

the ratio between the frequency that any particular 

symbol vk is emitted and that for any symbol.
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Then, we start with rough or arbitrary estimates of aij and bik, 

calculate improved estimates by above Eqs., and repeat until 

some convergence criterion is met.

ijb̂

kexpected number of times in state  and observe symbol ˆ
expected number of times in state 
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v
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



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• Parameters Learning Algorithm

Begin initialize

aij, bik, training sequence VT, convergence criterion θ, z=0

Do z←z+1

compute         from a(z-1) and b(z-1)

compute          from a(z-1) and b(z-1)

aij(z) ←

bik(z) ← 

Until max
i,j,k

{aij(z)-aij(z-1),bjk(z)-bik(z-1)}< θ

Return aij ← aij(z); bik ← bik(z)

End

• Parameter Updates:

Baum-Welch Forward-Backward Algorithm

( )a z

( )b z
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Convergence

• Requires several presentations of each training 

sequence (fewer than 5 common in speech)

• Another stopping criterion:

– Overall probability that learning model could have 

generated the training data

• Seeding the parameters with good initial guesses is 

very important.
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• Two approaches:

– HMM can model all possible 

words

– Each state corresponds to each 

letter of alphabet

– Letter transition probabilities are 

calculated for each pair of letters

– Letter confusion probabilities are 

symbol probabilities

– Decoding problem gives most 

likely word

• Separate HMMs are used to 

model each word

– Evaluation problem gives 

probability of observation which is 

used as a class-conditional 

probability 

46

● Each word, e.g., cat, dog, etc, has an 

associated HMM

● For a test utterance determine which 

model has highest probability 

● HMMs for speech are left-to-right 

models

● HMM produces a class conditional 

class-probability

HMM Word Recognition


