- In a mixture model, there are many "sub-models", each of which has its own
probability distribution which describes how it generates data when 1t 1s active.

- There 1s also a "mixer" or "gate" which controls how often each sub-model 1s
active.

- Formally, a mixture 1s defined as a weighted sum of K components where each
component 1s a parametric density function p(x/6,):
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Mixture of Gaussian Data - Example




- The parameters 6 to estimate are:

* the values of 7;
* the parameters 6; of p(x/6;)

- The component densities p(x/6;) may be of different parametric forms and are
specified using knowledge of the data generation process, if available.

- The weights 7; are the mixing parameters and they sum to unity:




Fitting a Mixture Model to
a set of Observations D,

 Estimate the mixture parameters that best describe
the data D, (i.e., ML problem).

« Two fundamental issues
— Estimate mixture parameters
— Estimate number of mixture components




o(x16)= 3, p(xlo)m,
=1

 Each p(x/6,) is a multivariate Gaussian.

 The parameters 6, are (w,2,)
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Figure 1: One dimensional Gaussian mixture pdf, consisting of 3 single Gaussians




- Each instance 1s generated using a two-step process:

(1) One of the K Gaussians i1s selected at random, with probabilities
N, M., .

(2) A single random instance x; 1s generated according to this selected distri-
bution.

- This process 1s repeated to generate a set of data points D.




- As we have seen, given a set of data D=(x;, x», ..., x,,), ML seeks the value of 8
that maximizes the following probability:

p(DI6) = H1 p(x,/6)

K
- Since p(x,/8) is modeled as a mixture (i.e., p(x,;/8) = Y, p(x;/8;)x;) the above
=1

expression can be written as:

n K

p(D/6) = 1} kZ_‘i p(xi/0,)7y

op(D/8)
06

- In general, it 1s not possible to solve = 0 explicitly for the parameters

and 1iterative schemes must be employed.
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« Assumptions

(1) m = 7y =+ = mx (uniform distribution)
(2) Each Gaussian has the same variance ¢~ which is known.

- The problem 1s to estimate the means of the Gaussians 8 = (4, .. ... tir)

Note: 1if we knew which Gaussian generated each datapoint, then it would be

easy to find the parameters for each Gaussian using ML.




Estimating Mixture Parameters
Using EM: Case of Means (cont’d)

« |ntroducing hidden or unobserved variables

- We can think of the full description of each instance x; as

yiz(xi: Zi)z(xi> Zils 2425 --:ZiK)

where z; 1s a class indicator vector (hidden variable):

1 1if x; was generated by j— th component

otherwise

- In this case, x; are observable and z,; non-observable.




« Main steps using EM

- The EM algorithm searches for a ML hypothesis through the following iterative
scheme:

(1) Initialize the hypothesis 8°=(uf, 115, . .., 1)

(2) Estimate the expected values of the hidden variables z;; using the current
hypothesis 6'=(1, &5, .., i)

(3) Update the hypothesis 8" =(ui™, 157, ..., 4i") using the expected values
of the hidden variables from step 2.

- Repeat steps (2)-(3) until convergence.
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Derivation of the Expectation Step
- We must derive an expression for (8, 6") = E, (In p(D,/6)/ D, 6"

(1) Derive the form of In p(D,/8):

don’t get
p(D,/6) = 1_11 BB confused by

notation
- We can write p(y,;/6) as follows:

p(yil0) = p(x;,2,/8) = p(x,/z;, O)p(z;/8) = p(x;/ ej)”j
(assuming z;=1 and z;=0 for k # j)

- We can rewrite p(x,;/8;)x; as follows:

K
Pi/9) = T p(xi/6pm |




 Derivation of the Expectation Step (cont’d)

- Thus, p(D,/8) can be written as follows (7;’s are all equal):

o \
= : Zik
P(D,/6) = TH[ p(x,/6,)]

- We have assumed the form of p(x,/6;) to be Gaussian:

C— l»lk)2
202

exp|[— ], thus

x,-/9 =
P( k) O'\/ﬂ

K

T[pCx /01 = 2 23 — 1]

1
ex,
e
which leads to the following form for p(D,/6):

n

1
p(D /9) l_{ O'\/Z_ exp[_ Z sz(xz .uk)z]




 Derivation of the Expectation Step (cont’d)

- Let’s compute now In p(D,/8):

4 1
In p(D,/6) = g.(ln el kZ_‘i 23— MY

(2) Take the expected value of In p(D,/6).

E.(In p(D,/6)/D,,8") =E(i§1(ln - \/— 752 kZ_'i 2ip(X; — L)) =

n 1
Xlln ——=—7—3 > Bz~ 1))

=l k=1




Derivation of the Expectation Step (cont’d)

- E(z;) 15 just the probability that the mstance x; was generated by the k-th com-
ponent (€., E(zy) = Y, 2;P(z) = P(zy) = P(kx;).
;

o — ﬂ@z

20° ]

(x; - ﬂ;)z
20°

exp|—
Ezy) = —
2 exp[-

J7

]




* Derivation of the Maximization Step

- Maximize Q(6, 6") = E, (In p(D,/6)/ D, 6")

> By,
1 _ =l

90
8_=O or | u~ =—;
e > E(zy)

i=1




« Summary of steps

Initialization step

Expectation step




* Summary of steps (cont’d)

Maximization step




- Suppose we want to maximize f(x) subject to some constraint expressed in the
form:

g(x)=0

- To find the maximum, first we form the Lagrangian function:

L(x,2) = f(x) + Ag(x)

(A 1s called the Lagrange undetermined multiplier)

- Take the derivative and set it equal to zero:

dL(x,2) 9f(x) ey dg(x) _

ox  Ox ox .

- Solve the resulting equation for A and the value x that maximizes f(x)




If x is d-dimensional, we have d+1 equations and d+1
unknowns!
« Example: find the stationary point of  f(x,X,)=X;X,
subject to the constraint g(x;,X,)=X;+X,-1=0

OL(X, X, 4)

ox,

L(X, %, 4) = T(X, %) +A9(X, X,) OL(X;, X,, A)
OX,

OL(X, %, )
oA

X,+4=0

=X%+4A=0

=X +X,-1=0




- If we knew which sub-model was responsible for generating each datapoint,
then 1t would be easy to find the ML parameters for each sub-model.

(1) Use EM to estimate which sub-model was responsible for generating each
datapoint.

(2) Find the ML parameters based on these estimates.

(3) Use the new ML parameters to re-estimate the responsibilities and iterate.
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* Involving hidden variables

- We do not know which instance x; was generated by which component (1.¢., the
missing data are the labels showing which sub-model generated each datapoint).

- Augment each instance x; by the missing information:
Yi=(%;2;)

where z; 1s a class indicator vector z; = (21, 224, .., Zgi):

Z o
L otherwise

{1 if x; generated by j —th component

(x; are observable and z; non-observable)
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Derivation of the Expectation Step
- We must derive an expression for O(6, 8") = E, (In p(D,/6)/ D,, 6"

(1) Derive the form of In p(D,/6).

p(D,/6) = Up(y,/6)
- We can write p(y,;/8) as follows:

pil8) = p(x;,2i10) = p(x/z;, O)p(z:/6) = p(x:/0;)7;
(assuming z;=1 and z;=0 for k # j)

- We can rewrite the above expression as follows:

K
p(y/8)= ]El[l’(xi/ O )]




 Derivation of the Expectation Step (cont’d)

- Thus, p(D,/8) can be written as follows:

n K
p(D,/8) = [ p(xi/6)m, ] ™

- We can now compute In p(D,/8)

n K

In p(D,/8) = ékzz‘i Zg In (p(x;/6,)7y) =

n K n K

Y2 ziln(p(x/6)+ X X zi In(7p)

i=1 k=1 i=1 k=1




Derivation of the Expectation Step (cont’d)

(2) Take the expected value of In p(D,/8):

n K n K

E(ln p(D,/6)/D,,8") = §1 ;?::1 E(z)ln (p(x,/6)) + §1 kﬁzi E(zy)ln (mp)

- E(z;) 1s just the probability that instance x; was generated by the k-th
component (i.e., E(zy) = X, z,;P(z;) = P(zy) = P(k/x;):
r

p(x,-/@t)ﬂt
E(zy)= m—2F

E{ p(xi/6)7]




 Derivation of the Maximization Step

4
- Maximize Q(8; 8") subject to the constraint Y, 7 =1:
k=1

n K n K

06,6 =X X E(zp)in (p(x;/6,) + X X E(zg)ln (zp) + M1 — E i)

=1 &=l =l k=1 =l

where A 1s the Langrange multiplier.

o
ﬁ_o or ZE(z,k)——/l 0 or |z" _ZE(sz)
aﬂ'k =l Tk

K K n
(the constraint Y, 7, =1 gives Y, X, E(z;z) = A)
k=1 k=1 i=1




Derivation of the Maximization Step (cont’d)

aQI 1 n
= .=0 or| g = | EE(Zik)xi

0y, 17

an 1 n
== & chﬂ =~ 1 2 -Blzg X6 — ﬂ?l)(xi - ﬂfzﬂ )T
0y nw” g




« Summary of Steps

Initialization step

9p=(%Q, 1y, Z0)

Expectation step

p(xi/Gt)zt
Eeg)=5———




* Summary of Steps (cont’d)

Maximization step

mpt == EE(sz)

n i

| n
1
= — R EGx,

n7w, =

1
B = — ZE(szXx — 1Y — T
k

(It ||49‘"L+1 — 0| < &, stop; otherwise, go to step 2.




- Use EM to obtain a sequence of parameter estimates for a range of values X
{@(K)a K=Kmin>- ¢ -:Kmax }

- The estimate of X 1s then defined as a minimizer of some cost function:

Fa

K = arg mmg(C(Ou) K), K=Ky Ko

- Most often, the cost function includes In p(D,/6) and an additional term whose
role 1s to penalize large values of K.

- Several criteria have been used, e.g., Minimum description length (MDL)







