
Ch3-part4: Independent Component 

Analysis (ICA)
• Method for finding underlying components 

from multi-dimensional data.

• Focus is on Independent and Non-Gaussian 

components in ICA as compared to 

uncorrelated and Gaussian components in FA 

and PCA

• Multiple sensors receiving signals which are 

mixture of original signals

• Estimate original source signals from mixture 

of received signals 1



• Can be viewed as Blind-Source Separation as 

mixing parameters are not known

• Observe n random variables which 

are linear combinations of n random variables

which are mutually independent

• In Matrix Notation, X = AS

• If we can estimate A, then we can compute S

by inverting A:   

• Assume source signals are statistically 

independent
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• Estimate the mixing parameters and source 

signals

• Find a linear transformation of observed 

signals such that the resulting signals are as 

independent as possible

• Components are assumed independent

• Components must have non-Gaussian densities

• Energies of independent components can not 

be estimated

• Sign Ambiguity in independent components
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Gaussian and Non-Gaussian 

components

• If some components are Gaussian and some 

are non-Gaussian.

– Can estimate all non-Gaussian components 

– Linear combination of Gaussian components can 

be estimated.

– If only one Gaussian component, model can be 

estimated
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Why Non-Gaussian Components

• Uncorrelated Gaussian r.v. are independent

• Orthogonal mixing matrix can’t be estimated 

from Gaussian r.v.

• For Gaussian r.v. estimate of model is up to an 

orthogonal transformation

• ICA can be considered as non-Gaussian factor 

analysis

6



ICA vs. PCA

• PCA

– Find smaller set of components with reduced 

correlation. Based on finding  uncorrelated 

components

– Needs only second order statistics

• ICA 

– Based on finding independent components

– Needs higher order statistics
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Whitening as Preprocessing for ICA

• Elements are uncorrelated and have unit variances

• Decorrelation followed by scaling

• Any orthogonal transformation of whitened r.v. will 

be white

• So whitening gives components up to orthogonal 

transformation. 

• Useful as preprocessing step for ICA.

• Search is restricted to orthogonal mixing matrices

• Parameters reduced from
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ICA Techniques

• Maximum Likelihood Estimation

• Minimization of Mutual Information (Kullback-

Leibler Divergence and maximum entropy)

• Maximization of non-Gaussianity (kurtosis and 

negentropy)

• Negentropy
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Illustration of ICA with 2 signals
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Excluded case

There is one case when rotation 

doesn’t matter. This case cannot be 

solved by basic ICA.

…when both densities are 

Gaussian

Example of non-Gaussian density (-) 

vs.Gaussian (-.) 

Seek  non-Gaussian sources for two reasons:

* identifiability

* interestingness: Gaussians are not 

interesting since the superposition of 

independent sources tends to be Gaussian
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Simple Simulation

• Separation of 2 components

• Figure 1: Two independent non Gaussian wave 

samples
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Simple Simulation

• Figure 2: Mixed signals
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Simple Simulation

• Recovered signals vs original signals

Figure 3: Recovered 

signals

Figure 4: Original signals
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Gaussian Simulation

Figure 5: 2 wave samples and 

noise signal
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Gaussian Simulation

Figure 6: 3 mixed signals
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Gaussian Simulation

• Comparison of recovered signals vs original 

signals

Figure 7: Recovered 

signals

Figure 8: Original signal
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Gaussian Simulation 2:

• Tried with 2 Gaussian components

– Components were not estimated properly due to 

more than one Gaussian component

Figure 10: Original 

signals

Figure 11: Recovered 

signals
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Dimensionality Reduction 

(Other Methods)

• Kernel PCA

• Locally Linear Embedding (LLE)

• Laplacian Eigenmaps (LEM)

• Multidimensional Scaling (MDS)

• Isomap

• Semidefinite Embedding (SDE)

• Unified Framework

• …
21
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Expectation-Maximization (EM)
• We saw in Ch 2 how we could classify a test point 

even when it has missing features. We can now 

extend our application of maximum likelihood 

techniques to permit the learning of parameters 

governing a distribution from training points, some of 

which have missing features.

• If we had uncorrupted data, we could use maximum 

likelihood, i.e., find     that maximized the log-

likelihood l(θ).

• We can also extend maximum likelihood techniques 

to allow learning of parameters when some training 

patterns have missing features.

θ̂



• The basic idea in the expectation maximization 

or EM algorithm, is to iteratively estimate the 

likelihood given the data that is present.

• There are two main applications of the EM 

algorithm:

– Learning when the data is incomplete or has missing 

values.

– Optimizing a likelihood function that is analytically 

intractable but can be simplified by assuming the 

existence of values for additional but missing (or 

hidden) parameters.

• The second problem is more common in pattern 

recognition applications. 23
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– Some creativity is required to recognize where the 
EM algorithm can be used!

– Typically used for estimating the parameters of 
Mixtures of Gaussians.

• The EM algorithm is ideal (i.e., it produces 
ML estimates) for problems with unobserved 
(missing) data.

If the complete pdf was available
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Consider a full sample D = {x1, ..., xn} of points taken 

from a single distribution. Suppose, though, that here 

some features are missing; thus any sample point can

be written as xk = {xkg, xkb}, i.e., comprising the “good” 

features and the missing, or “bad” ones. D=DgUDb

Next we form the function

where the use of the semicolon denotes, that Q(θ; θi) is 

a function of θ with θi assumed fixed.

The parameter vector θi is the current (best) estimate 

for the full distribution; θ is a candidate vector for an 

improved estimate.
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Given such a candidate θ, the right hand side of Eq. 

calculates the likelihood of the data, including the 

unknown feature Db marginalized with respect to the 

current best distribution, which is described by θi.
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Different candidate θs will of course lead to different 

such likelihoods. Our algorithm will select the best 

such candidate θ and call it θi+1 — the one 

corresponding to the greatest Q(θ; θi).

The EM estimate is only guaranteed to never get worse. 

Usually, it will find a peak in the likelihood p(y |θ), but 

if the likelihood function p(y |θ) has multiple peaks, 

EM will not necessarily find the global maximum of the 

likelihood. In practice, it is common to start EM from 

multiple random initial guesses, and choose the one 

with the largest likelihood as the final guess for θ.



28Figure 3.5:



29

Figure 3.5: The search for the best model via the EM 

algorithm starts with some initial value of the model 

parameters, θ0. Then, via the M step the optimal θ1

is found. Next, θ1 is held constant and the value θ2

found which optimizes Q(·, ·). This process iterates 

until no value of θ can be found that will increase 

Q(·, ·). Note in particular that this is different from a 

gradient search. For example here θ1 is the global 

optimum (given fixed θ0), and would not necessarily 

have been found via gradient search.



30

This so-called Expectation-Maximization or EM 

algorithm is most useful when the optimization of 

Q(·, ·) is simpler than that of l(·). 

Most importantly, the algorithm guarantees that the 

log-likelihood of the good data (with the bad data 

marginalized) will increase monotonically.

Example 2: Expectation-Maximization for a 2D normal model

where * represents the unknown value of the first 

feature of point x4. Db consists of the single feature 

x41, and the good data Dg all the rest.
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We assume our model is a Gaussian with diagonal 

covariance and arbitrary mean, and thus can be 

described by the parameter vector

We take our initial guess to be a Gaussian centered on 

the origin having Σ = I, that is:
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In finding our first improved estimate, θ1, we must 

calculate Q(θ, θ0)

where x41 is the unknown first feature of point x4, and 

K is a constant that can be brought out of the integral.
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This completes the expectation or E step. Through a 

straightforward calculation, we find the values of θ 

(that is, μ1, μ2, σ1 and σ2 that maximize Q(· ; ·), to get 

the next estimate:

This new mean and the 1/e ellipse of the new 

covariance matrix are shown in the figure. Subsequent 

iterations are conceptually the same, but require a bit 

more extensive calculation
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The mean will remain at μ2 = 2. After three iterations 

the algorithm converges at the solution

We must be careful and note that 

the EM algorithm leads to the 

greatest loglikelihood of the 

good data, with the bad data 

marginalized. There may be 

particular values of the bad data 

that give a different solution and 

an even greater log-likelihood.
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For instance, in this Example if the missing feature 

had value x41 = 1, so that 

we would have a solution

and a log-likelihood for the full data (good plus bad) 

that is greater than for the good alone.

Note too that if no data is missing, the calculation of 

Q(θ; θi) is simple since no integrals are involved.
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