Chapter 3 (part 3)

* Problems of Dimensionality

* Maximume-Likelihood and
Bayesian Parameter Estimation

 Fisher Linear Discriminant
* Expectation-Maximization (E

All materials used in this course were taken from the textbook “Pattern Classification”by Duda et al., John Wiley & Sons, 2001
with the permission of the authors and the publisher



«  Problems of Dimensionality

—  Problems involving 50 or 100 features (binary valued)

1. Classification accuracy depends upon the dimensionality
and the amount of training data.

2. The computational complexity of designing the classifier.
Case of two classes multivariate normal with the same covariance:
It can be shown:

1 7 4
P(error) =—— | e “?du

272- rJZ
where: r®=(u, —p,) 7 (1, —p,)
lim P(error) =0

r—o0

r'1s the squared Mahalanobis distance



The probability of error decreases as 7 increases, approaching
zero as rapproaches infinity.

If features are independent then:
Y =diag (012,622,..., 05)

i=1 O;

Most useful features are the ones for which the difference
between the means is large relative to the standard deviation.

It has frequently been observed in practice that, beyond a
certain point, the inclusion of additional features leads to
worse rather than better performance: we have the wrong
model !




Figure 3.3: Two three-dimensional distributions have nhc')noverlapping
densities, and thus in three dimensions the Bayes error vanishes. When
projected to a subspace — here, the two-dimensional x;-x, subspace or a one-
dimensional x; subspace — there can be greater overlap of the projected
distributions, and hence greater Bayes errors.



Fusing of different types of information, referred to
as feature fusion, is a good application for Principal
Components Analysis (PCA).

Increasing the feature vector dimension can
significantly increase the memory (e.g., the number
of elements in the covariance matrix grows as the
square of the dimension of the feature vector) and
computational complexity.

Good rule of thumb: 10 independent data samples for
every parameter to be estimated.

For practical systems, such as speech recognition,
even this simple rule can result in a need for vast
amounts of data.



Computational Complexity

— Our design methodology is affected by the computational
difficulty

* “big oh” notation

fx) = O(H(X)) “big oh of A"
i 3(C,, X,) € R;

f (X)| < c,|n(x)| for all x > x,

(An upper bound on A x) grows no worse than A(x) for sufficiently
large x1)

X) = 2+3x+4x°
qx) =52
fX) = O(x°)



— “big oh” 1s not unique!

fx) = O0¢); f(x) = O(x), f(x) = O(x’)

* “big theta” notation
f(x) = O(h(x))
If: 3(X01C11C2)€9%3;VX>X0
0 < c,h(x) < f(x) <c,h(x)

f(x) = O(F)but f(x) = O(°)



Asymptotic upper bound O(g(x)) = {A x): there exist positive
constants ¢and x; such that 0 < Ax) < cg(x) for all x> x,}

Asymptotic lower bound Q(g(x)) = {f(x): there exist positive
constants cand x; such that 0 < cg(x) < f(x) for all x> x;}

Asymptotically tight bound ®(g(x)) = {A X): there exist positive
constants ¢, ¢,, and x; such that 0 < ¢, g(x) < A(x) < ¢,9(x) for all x>

Xo}

f(x) = O(g(x)) f(x) = Q(g(x)) f(x) = O(g(x))

f(x) ¢, g(x)

cg(x)

fix)

Cc, g(x)

a) b) c)



Complexity of the ML Estimation

 Gaussian priors in ddimensions classifier with 72training
samples for each of cclasses

- For each category, we have to compute the discriminant
function

0(1)

o e S0 a1
gxX)=—=(x— p )t & (x—ﬁ)——InZﬂ——Inﬁ‘.‘Jrln P(w)
2 2 2 —
— o(n)
0(d?®)

» The computational complexity of finding the sample mean ;fl
IS O(na), since for each of the ddimensions we must add 7
component values.

» For each of the o{d+ 1)/2 independent components of the
sample covariance matrix X there are 7 multiplications and
additions, giving a complexity of O(d?n).



Determinant of X is an O(c°) calculation, as we can
easily verify by counting the number of operations in
matrix “sweep’” methods.

The inverse can be calculated in O(c°) calculations,
for instance by Gaussian elimination.

The complexity of estimating Aw) is of course O(1).

Total = O(@P.n) Total for cclasses = O(cab.n)=0O(a.n)
Cost increase when dand nare large!

Bayesian learning has higher complexity as a
consequence of integrating over model parameters é.

... space complexity — time complexity ....
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Overfitting

It frequently happens that the number of available
samples is inadequate, and the question of how to
proceed arises.

One possibility is to reduce the dimensionality, either
by redesigning the feature extractor, by selecting an
appropriate subset of the existing features, or by
combining the existing features in some way (Ch10).

Another possibility Is to assume that all ¢ classes
share the same covariance matrix (pooled
covariance).

Yet another alternative is to look for a better estimate
for X (e.g., use Bayesian parameter estimate).
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« If a priori estimate X, Is available, a Bayesian or
pseudo-Bayesian estlmate of the form AZ, +(1- )X
might be employed.

* For example, one might assume that all covariances
for which the magnitude of the correlation coefficient
IS not near unity are actually zero. An extreme of this
approach Is to assume statistical independence,
thereby making all the off-diagonal elements be zero,
regardless of empirical evidence to the contrary.

« Even though such assumptions are almost surely

Incorrect, the resulting heuristic estimates sometimes
provide better performance than the maximum
likelithood estimate of the full parameter space. —
paradox. — problem of insutficient data (an
analogous problem in curve fitting).
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a greater error on
training data might
Improve generalization!

J0 |

FIGURE 3.4. The “training data” (black dots) were selected from a quadratic
function plus Gaussian noise, i.e., f(x) = ax*+bx+c+ < where p(g) ~ NO, ¢°).
The 10™-degree polynomial shown fits the data perfectly, but we desire
Instead the second-order function 7(x), because it would lead to better
predictions for new samples.
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Figure 1.6 Plots of the solutions obtained by minimizing the sum-of-squares
error function using the A/ =9 polynomial for /= 15 data points (left plot) and
N =100 data points (right plot). We see that increasing the size of the data

set reduces the over-fitting problem.
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* |n fitting the points in Fig. 3.4, then, we might
consider beginning with a high order polynomial
(e.g., 10th order), and successively smoothing or
simplifying our model by eliminating the highest-
order terms. While this would in virtually all cases
lead to greater error on the “training data,” we might
expect the generalization to improve.

There are a number of heuristic methods that can be
applied in the Gaussian classifier case.

For instance, suppose we wish to design a classifier
for distributions Mp,,X,) and Mp,,X,) and we have
reason to believe that we have insufficient data for
accurately estimating the parameters.

15



« We might make the simplification that they have the
same covariance, I.e., Mp,,X) and Mp,,X), and
estimate X accordingly. Such estimation requires
proper normalization of the data.

« An Intermediate approach Is to assume a weighted
combination of the equal and individual covariances,
a technique known as s/irinkage, (also called
regularized discriminant analysis) since the individual
covariances “shrink” toward a common one. If /1S an
Index on the ¢ categories in question, we have

(1-a)nX, +anx
(l— 05)ni +an

Zi(a): for 0 <o <1.
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 We could “shrink™ the estimate of the
(assumed) common covariance matrix toward
the identity matrix, as

X(B)=01-B)z+pI for 0 <p <1
 Such methods for simplifying classifiers have

counterparts in regression, generally known as
ridge regression ( ww o s 5 ;). In ANN this is

called weight decay.
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Component Analysis and Discriminants

e Goal: Combine features in order to reduce the
dimension of the feature space

— Linear combinations are simple to compute and tractable

— Project high dimensional data onto a lower dimensional
space

— Three classical approaches for finding “optimal” linear
transformation

* PCA (Principal Component Analysis) “Projection that best
represents the data in a least- square sense”

MDA (Multiple Discriminant Analysis) “Projection that best
separates the data in a least-squares sense”

* Independent Component Analysis (ICA): projection that
minimizes the mutual information of the components.
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 Given nd-dimensional samples x,, X,, ..., X,
Representing the set by X, (finding a vector X,
such that the sum of the squared distances
between X, and the various x, Is as small as
possible. We define the squared-error criterion

function J,(x,) by :
Jo(Xo) = D Ko =X I
k=1

and seek the value of x,that minimizes Jj,.
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e Solution: x,=m, where m Is the sample mean,

1 n
m=—)>» X
e Proof: nkzzll ‘

Jo(Xo) = i”xo — Xy ||2= i“(xO -m)— (X, —m) ”2

N Zn:”(xo -m)|IF —2i (X, —m)' (x, —m) +Zn:||(xk -m) |l
k=1 k=1 " =

= 20106 ~m) I =206 ~m)' D 6 =)+ ok ~m)

= % ~m) I + Mk, ~m)

independent of X, — Minimized by Xo=M
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* The sample mean Is a zero-dimensional
representation of data set. It does not reveal
any of the variability in the data.

 \We can obtain a more interesting, one-
dimensional representation by projecting the
data onto a line running through the sample
mean, Xx=m+ae, where e Is a unit vector in the
direction of the line.

* If we represent x, by m+a,e, we can find an
“optimal” set of coefficient g, by minimizing
the squared-error criterion function

21



3, (8,2,,8) = D I(M+2a,8) =X, [°= Xl (x, ~m) |
k=1 k=1
=>a’ lel’ 2> ae' (x, —m)+ > [(x, —m)|? (82)
k=1 k=1 k=1

Recognizing that ||e||=1, partially differentiating with respect to &,
and setting the derivative to zero, we obtain

ai=e'(x,-m) (83)
Geometrically, this result says that we obtain a least-squares
solution by projection the vector x, onto the line in the direction
of e that passes through the sample mean.

Finding the best direction e for the line. — Scatter Matrix S.

S=3 (x, ~m)(x, —m)!

22



 Scatter matrix S is 71 times the sample covariance
matrix. Using Eqs 82,83 —

3@)=Y a7 -2 a7+ Y lx, -m)|f
==Y [e! (¢, ~m)T + Y0, ~m)
==Y e (% ~m)(x, ~m)'e+ Y [(x, ~m)

=—e'Se+ D [I(x, —m)|I
k=1

 The vector e that minimizes J; also maximizes e'Se.
We use the method of Lagrange multiplier to
maximize e'Se subject to the constraint that ||e||=1.

23



Letting A be the undetermined multiplier we
differentiate

u=e'Se - A(ete-1)
with respect to e and equating to zero to obtain

Z—u =25e-2le=0 =>Se=Jle=e'Se=Ae'e=1
e

To maximize e'Se we want to select the eigenvector
corresponding to the largest eigenvalue of the scatter matrix.
This interesting result can be extended from

one-dimensional projection to a g-dimensional projection.

24



X = m+Za

Where d<d. It can be shown that

= Z_:” (m +Zakiei) —X |

IS minimized when the vectors e, ..., &4 are the &
eigenvectors of the scatter matrix having the largest
eigenvalues. Because the scatter matrix iIs real and
symmetric, these eigenvectors are orthogonal.

They form a natural set of basis vectors for representing
any feature vector x. The coefficients a; are the components
of X In that basis and are called principal components.
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Fisher Linear Discriminant

 Although PCA finds

components that are useful
for representing data, there
IS NO reason to assume that
these components must be
useful for discriminating
between data in different
classes.

 Discriminant analysis seeks
directions that are efficient
for discrimination.

26



» We can reduce the dimensionality from ¢
dimensions to one dimension If we merely
project the a~tdimensional data onto a line.

* By moving the line around, we might be able
to find an orientation for which the projected
samples are well separated. This is exactly the
goal of classical discriminant analysis.

» Suppose that we have a set of 7 g~dimensional
samples X, ..., X, /7, In the subset D, labeled
®, and 72, In the subset D, labeled .. If we
form a linear combination of the components
of X, we obtain the scalar dot product

27



y=w~X

and a corresponding set of n7samples y;, ..., ¥, divided
Into the subsets Y; and Y.

Geometrically, If ||w|| = 1, each ) is the projection of
the corresponding x; onto a line in the direction of w.

The magnitude of w Is not important but its direction is.

[f we imagine that the samples labeled w, fall more or
less into one cluster while those labeled o, fall in
another, we want the projections falling onto the line to
be well separated, not thoroughly intermingled.

28
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FIGURE 3.5. Projection of the same set of samples onto two
different lines in the directions marked w. The figure on the
right shows greater separation between the red and black

projected points.
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 Finding the best such direction w, one we hope will
enable accurate classification.

« A measure of the separation between the projected
points Is the difference of the sample means.

 If m; Is the g~dimensional sample mean given by

1
m, _n—Zx

the sample mean for the projected points is given by
~ 1 1
m==>y==—>wx=wm,
ni yeY; ni xeD;

and 1s simply the projection of m.

30



The distance between the projected means Is
~ =~ | _ |ia,t t
m, —m,| = ‘w m, —w'm,
and that we can make this difference as large as we wish merely
by scaling w.
To obtain good separation of the projected data we really want

the difference between the means to be large relative to some
measure of the standard deviations for each class.

Rather than forming sample variances, we define the scatter
for projected samples labeled o ; by

~2 ~ \2
S, = Z(y —m, )
yeY,
Thus, (= )(S +5,") is an estimate of the variance of the pooled
data, and (5°+5,%) is called the total within-class scatter of the

projected samples. 31



The Fisher linear discriminant employs that linear function wtx
for which the criterion function

Iy =M i
S S

IS maximum (and independent of ||wl||).

While the w maximizing A ) leads to the best separation
between the two projected sets, we will also need a #/reshold
criterion before we have a true classifier. We first consider how
to find the optimal w, and later turn to the issue of thresholds.

To obtain [ ) as an explicit function of w, we define the scatter
matrices S;and scatter S, by

S = Z(x—mi)(x—mi)t

Xe Di 32



and SW = Sl + Sz

Then we can write

§i2 = Z(y_mi )2 = Z(th_wtmi)z

YeY; xeb;
= > w(x—m, )Jx-m,)w=w'S,w
xeb;
therefore the sum of these scatters can be written

~ 2 ~ 2
S +S,” =wW'S, w

Similarly, the separations of the projected means obeys
~ ~ \2 2
t {
=W (ml _mZ)(ml _mz) W

=W'S W
where S, :(ml_mz)(ml_mz)t 33



We call S, the Within-class scatter matrix. 1t is proportional to
the sample covariance matrix for the pooled a-dimensional data.
It is symmetric and positive semidefinite, and is usually
nonsingular if n > d.

Likewise, Sz Is called the Between class scatter matrix. It is
also symmetric and positive semidefinite, but because it Is the
outer product of two vectors, its rank Is at most one. In
particular, for any w, Sgw Is in the direction of m, - m,, and
S Is quite singular.

In terms of Sgand S, the criterion function A -) can be written as
t
WS W
J(w)=—=2
WS, W

This expression is well known in mathematical physics as the
generalized Rayleigh quotient.
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It Is easy to show that a vector w that maximizes A -) must satisfy
S.W=AS,W
for some constant A, which 1s a generalized eigenvalue problem.
-1 .
Sy OgW = AW.

Since Spw Is in the direction of m;-m, and the scale factor for w
IS iImmaterial the solution for the w that optimizes A ) Is

W = S\Ivl(ml _mz)

Thus, we have obtained w for Fisher’s linear discriminant — the
linear function yielding the maximum ratio of between-class
scatter to within-class scatter (called canonical variate).

This mapping is many-to-one, and in theory can not possibly
reduce the minimum achievable error rate if we have a very
large training set. 3



e All that remains is to find the threshold, 1.e., the point along the
one-dimensional subspace separating the projected points.
e\When the conditional densities p(X/», are multivariate normal
with equal covariance matrices X, we can calculate the threshold
directly.

The optimal decision boundary is W'X + W, =0, ,w= > (m—n,)
and where 1 Is a constant involving w and the prior probabilities.

e Thus, for the normal, equal-covariance case, the optimal decision
rule 1s merely to decide w, if Fisher’s linear discriminant exceed
some threshold, and to decide w, otherwise. (Choose w, where the
posteriors in the one-dimensional distributions are equal).

P(w2)
P(w1)

_ 1
g(x) = (uq — HZ)TSH;I (:x - E(P‘q T Mz)) — In

* Let’s work some examples (class-independent PCA and LDA).

http://www.ece.msstate.edu/research/isip/projects/speech/software/demonstrations/applets/util/pattern_recognition/current/index.html 36



http://www.ece.msstate.edu/research/isip/projects/speech/software/demonstrations/applets/util/pattern_recognition/current/index.html
http://www.ece.msstate.edu/research/isip/projects/speech/software/demonstrations/applets/util/pattern_recognition/current/index.html
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FIGURE 5.6 (a) The optimal line resulting from Fisher’s criterion,
for two Gaussian classes. Both classes share the same diagonal
covariance matrix, with equal elements on the diagonal. The line is
parallel to p,-p,. (b) The covariance matrix for both classes is
nondiagonal. The optimal line is on the left. Observe that it is no
more parallel to p,-p,. The line on the right is not optimal and the
classes, after the projection, overlap. 37



Multiple Discriminant Analysis

 For the cclass problem, the natural generalization of
Fisher’s linear discriminant involves ¢ -1
discriminant functions.

» Thus, the projection is from a a~dimensional space to
a (¢ -1)-dimensional space, and it is tacitly assumed
that &> ¢. Within-class scatter matrix

ZS Z_lleZD:(X m)(x—mi)t
Zx

| xeD; 38



The proper generalization for Sz Is not quite so obvious.
Suppose that we define a fotal mean vectorm and a fotal
scatter matrix S rby

Then it follows that ST :;X(X_ni];(x_m)t
S, =izcllxezt;-(x—mﬁmi—m)(x—mi+mi—m)t —
g;(x—mi)(x—mi)t+g;(mi—m)(mi—m)t

=S, +ZC:ni (m; —m)(m, —m)

i=1 %



The 2" term is defined as a general Between-class scatter
matrix, so that the total scatter is the sum of the Within-
class scatter and the between-class scatter:

S, = n,(m, —m)(m, -m)
=1
S =S, +S;
For the 2-class case, the resulting between-class scatter
matrix Is 7,/,/ntimes our previous definition.
The projection from g~dim to (¢-1)-dim is done by ¢-1
discriminant functions: Y :W§X i=1 2. .. c1.

If the )/;are viewed as components of a vector y and the weight
vectors w; are viewed as the columns of a a-by-(c - 1) matrix W,
then the projection can be written as a single matrix equation

y=Wix=[wix]| i=12, .., c-1 40




The samples x,, ..., X, project to a corresponding set of samples
Y4, ..., Y, Which can be described by their own mean vectors
and scatter matrices. Thus, if we define

41



These equations show how the within-class and between-class
scatter matrices are transformed by the projection to the lower
dimensional space.

What we seek Is a transformation matrix W that in some sense

maximizes the ratio of the between-class scatter to the within-
class scatter.

A simple scalar measure of scatter is the determinant of the
scatter matrix. The determinant is the product of the
eigenvalues, and hence 1s the product of the “variances” in
the principal directions, thereby measuring the square of
the hyperellipsoidal scattering volume (ref. ch2).

Ss|  |W'sW|
Syl [W's, W

J(W) =

42
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FIGURE 3.6. Three 3-dimensional distributions are projected onto two-dimensional
subspaces, described by a normal vectors W, and W,. Informally, multiple

discriminant methods seek the optimum such subspace, that is, the one with the

greatest separation of the projected distributions for a given total within-scatter matrix, ,

here as associated with W,.



Maximizing A.)? — The columns of an optimal W are the
generalized eigenvectors that correspond to the largest
eigenvalues in
SBWZ' — )\zSWWz

If S,/ IS non-singular, this can be converted to a conventional
eigenvalue problem as before. However, this is actually
undesirable, since It requires an unnecessary computation of the
Inverse of S, Instead, one can find the eigenvalues as the roots of

the characteristic polynomial

and then solve

(SB — A4Sy )Wi =0
directly for the eigenvectors w;

44



Because S is the sum of ¢ matrices of rank™ one or
less, and because only ¢-1 of these are independent, S,
IS of rank ¢-1 or less. Thus, no more than ¢ -1 of the
elgenvalues are nonzero, and the desired weight
vectors correspond to these nonzero eigenvalues.

If the within-class scatter Is Isotropic, the eigenvectors
are merely the eigenvectors of S, and the eigenvectors
with nonzero eigenvalues span the space spanned by
the vectors m;— m. In this special case the columns of
W can be found simply by applying the Gram-Schmidt
orthonormalization procedure to the ¢-1 vectors
m,—m,/=1,..,c-1

* number of linearly independent rows or columns of a full matrix

45



As In the two-class case, multiple discriminant analysis
primarily provides a reasonable way of reducing the
dimensionality of the problem. Parametric or
nonparametric techniques that might not have been

feasible In the original space may work well in the
lower-dimensional space.
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B'S/B=I, B'S,B=D
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Js, tr{S\j\}SB} = +...+A_,+0

Iy tr{(ctswc)‘l(ctsBc)}, C's,C=C'S, CD
= J,, =tr{D} =4 +...+ 4, =J;,
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Other Scatter Matrices Criteria

« The sum of squared error Is defined as

JQZZC:Z ‘X_ml 2

i=1 xeD,
* The trace (sum of diagonal elements) is the
simplest scalar measure of the scatter matrix, as
It Is proportional to the sum of the variances In
the coordinate directions

l‘r[SW] = ZIV[SZ.] :2 L

=1 xeb,

2:]

€

X—m,
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Ja=|Sw|=1]) Si.
1=1

tr[SB]:ini
i=I

d
S3Ss =S A, =S5 -
1=1

2 Sw| 1
m;, _mH S| :H
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