
Chapter 3 (part 3)
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All materials used in this course were taken from the textbook “Pattern Classification” by Duda et al., John Wiley & Sons, 2001 

with the permission of the authors and the publisher

• Problems of Dimensionality

• Maximum-Likelihood and 

Bayesian Parameter Estimation

• Fisher Linear Discriminant

• Expectation-Maximization (EM)
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• Problems of Dimensionality

– Problems involving 50 or 100 features (binary valued)

1. Classification accuracy depends upon the dimensionality 

and the amount of training data.

2. The computational complexity of designing the classifier.

Case of two classes multivariate normal with the same covariance: 

It can be shown:
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r is the squared Mahalanobis distance
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• The probability of error decreases as r increases, approaching 

zero as r approaches infinity.

• If features are independent then:

• Most useful features are the ones for which the difference 

between the means is large relative to the standard deviation.

• It has frequently been observed in practice that, beyond a 

certain point, the inclusion of additional features leads to 

worse rather than better performance: we have the wrong 

model !
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Figure 3.3: Two three-dimensional distributions have nonoverlapping 

densities, and thus in three dimensions the Bayes error vanishes. When 

projected to a subspace — here, the two-dimensional x1-x2 subspace or a one-

dimensional x1 subspace — there can be greater overlap of the projected 

distributions, and hence greater Bayes errors.



• Fusing of different types of information, referred to 

as feature fusion, is a good application for Principal 

Components Analysis (PCA).

• Increasing the feature vector dimension can 

significantly increase the memory (e.g.,  the number 

of elements in the covariance matrix grows as the 

square of the dimension of the feature vector) and 

computational complexity.

• Good rule of thumb: 10 independent data samples for 

every parameter to be estimated.

• For practical systems, such as speech recognition, 

even this simple rule can result in a need for vast 

amounts of data.
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• Computational Complexity

– Our design methodology is affected by the computational 
difficulty

• “big oh” notation

f(x) = O(h(x)) “big oh of h(x)”

If:

(An upper bound on f(x) grows no worse than h(x) for sufficiently 
large x!)

f(x) = 2+3x+4x2

g(x) = x2

f(x) = O(x2)
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– “big oh” is not unique!

f(x) = O(x2); f(x) = O(x3); f(x) = O(x4)

• “big theta” notation

f(x) = (h(x))

If:  

f(x) = (x2) but f(x)  (x3) 
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Asymptotic upper bound O(g(x)) = {f(x): there exist positive 

constants c and x0 such that 0 ≤ f(x) ≤ cg(x) for all x ≥ x0}

Asymptotic lower bound Ω(g(x)) = {f(x): there exist positive 

constants c and x0 such that 0 ≤ cg(x) ≤ f(x) for all x ≥ x0}

Asymptotically tight bound Θ(g(x)) = {f(x): there exist positive 

constants c1, c2, and x0 such that 0 ≤ c1g(x) ≤ f(x) ≤ c2g(x) for all x≥

x0}
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Complexity of the ML Estimation

• Gaussian priors in d dimensions classifier with n training 
samples for each of c classes

• For each category, we have to compute the discriminant 
function

• The computational complexity of finding the sample mean    
is O(nd), since for each of the d dimensions we must add n 
component values.

• For each of the d(d + 1)/2 independent components of the 
sample covariance matrix Σ there are n multiplications and 
additions, giving a complexity of O(d2n).
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• Determinant of Σ is an O(d3) calculation, as we can 

easily verify by counting the number of operations in 

matrix “sweep” methods. 

• The inverse can be calculated in O(d3) calculations, 

for instance by Gaussian elimination.

• The complexity of estimating P(ω) is of course O(n).

• Total = O(d3.n) Total for c classes = O(cd3.n)≈O(d3.n)

Cost increase when d and n are large!

• Bayesian learning has higher complexity as a 

consequence of integrating over model parameters θ.

• … space complexity – time complexity ….
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Overfitting

• It frequently happens that the number of available 
samples is inadequate, and the question of how to 
proceed arises.

• One possibility is to reduce the dimensionality, either 
by redesigning the feature extractor, by selecting an 
appropriate subset of the existing features, or by 
combining the existing features in some way (Ch10).

• Another possibility is to assume that all c classes 
share the same covariance matrix (pooled 
covariance).

• Yet another alternative is to look for a better estimate 
for Σ (e.g., use Bayesian parameter estimate).
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• If a priori estimate Σ0 is available, a Bayesian or 
pseudo-Bayesian estimate of the form                  
might be employed.

• For example, one might assume that all covariances 
for which the magnitude of the correlation coefficient 
is not near unity are actually zero. An extreme of this 
approach is to assume statistical independence, 
thereby making all the off-diagonal elements be zero, 
regardless of empirical evidence to the contrary.

• Even though such assumptions are almost surely 
incorrect, the resulting heuristic estimates sometimes 
provide better performance than the maximum 
likelihood estimate of the full parameter space. → 
paradox. → problem of insufficient data (an 
analogous problem in curve fitting).

ΣΣ ˆ)1(0  
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FIGURE 3.4. The “training data” (black dots) were selected from a quadratic 

function plus Gaussian noise, i.e., f(x) = ax2+bx+c+ ε where p(ε) ~ N(0, σ2). 

The 10th-degree polynomial shown fits the data perfectly, but we desire 

instead the second-order function f(x), because it would lead to better 

predictions for new samples.

a greater error on

training data might 

improve generalization!
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Figure 1.6 Plots of the solutions obtained by minimizing the sum-of-squares 

error function using the M = 9 polynomial for N = 15 data points (left plot) and 

N = 100 data points (right plot). We see that increasing the size of the data 

set reduces the over-fitting problem.
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• In fitting the points in Fig. 3.4, then, we might 
consider beginning with a high order polynomial 
(e.g., 10th order), and successively smoothing or 
simplifying our model by eliminating the highest-
order terms. While this would in virtually all cases 
lead to greater error on the “training data,” we might 
expect the generalization to improve.

• There are a number of heuristic methods that can be 
applied in the Gaussian classifier case.

• For instance, suppose we wish to design a classifier 
for distributions N(μ1,Σ1) and N(μ2,Σ2) and we have 
reason to believe that we have insufficient data for 
accurately estimating the parameters.
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• We might make the simplification that they have the 

same covariance, i.e., N(μ1,Σ) and N(μ2,Σ), and 

estimate Σ accordingly. Such estimation requires 

proper normalization of the data.

• An intermediate approach is to assume a weighted 

combination of the equal and individual covariances, 

a technique known as shrinkage, (also called 

regularized discriminant analysis) since the individual 

covariances “shrink” toward a common one. If i is an 

index on the c categories in question, we have

for 0 < α < 1. 
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• We could “shrink” the estimate of the 

(assumed) common covariance matrix toward 

the identity matrix, as

for 0 < β < 1

• Such methods for simplifying classifiers have 

counterparts in regression, generally known as 
ridge regression (رگرسيون ستيغی). In ANN this is 

called weight decay. 

  IΣΣ   1)(
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Component Analysis and Discriminants

• Goal: Combine features in order to reduce the 

dimension of the feature space 

– Linear combinations are simple to compute and tractable

– Project high dimensional data onto a lower dimensional 

space

– Three classical approaches for finding “optimal” linear 

transformation

• PCA (Principal Component Analysis) “Projection that best 

represents the data in a least- square sense” 

• MDA (Multiple Discriminant Analysis) “Projection that best 

separates the data in a least-squares sense”

• Independent Component Analysis (ICA):  projection that  

minimizes the mutual  information of the components.
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Principal Component Analysis

• Given n d-dimensional samples x1, x2, …, xn. 
Representing the set by x0 (finding a vector x0 

such that the sum of the squared distances 
between x0  and the various xk  is as small as 
possible. We define the squared-error criterion 
function J0(x0) by

and seek the value of x0 that minimizes J0. 
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• Solution: x0=m, where m is the sample mean,

• Proof:
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• The sample mean is a zero-dimensional 

representation of data set. It does not reveal 

any of the variability in the data.

• We can obtain a more interesting, one-

dimensional representation by projecting the 

data onto a line running through the sample 

mean, x=m+ae, where e is a unit vector in the 

direction of the line.

• If we represent xk by m+ake, we can find an 

“optimal” set of coefficient ak by minimizing 

the squared-error criterion function
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Recognizing that ||e||=1, partially differentiating with respect to ak,

and setting the derivative to zero, we obtain

ak=et(xk-m)   (83)
Geometrically, this result says that we obtain a least-squares 

solution by projection the vector xk onto the line in the direction

of e that passes through the sample mean.

Finding the best direction e for the line. → Scatter Matrix S.
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• Scatter matrix S is n-1 times the sample covariance 

matrix. Using  Eqs 82 , 83 →

• The vector e that minimizes J1 also maximizes etSe. 

We use the method of Lagrange multiplier to 

maximize etSe subject to the constraint that ||e||=1.
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Letting λ be the undetermined multiplier we 

differentiate

u= etSe - λ(ete-1)

with respect to e and equating to zero to obtain 
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To maximize etSe we want to select the eigenvector

corresponding to the largest eigenvalue of the scatter matrix.

This interesting result can be extended from 

one-dimensional projection to a d-dimensional projection.
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is minimized when the vectors e1, …, ed′ are the d′

eigenvectors of the scatter matrix having the largest

eigenvalues. Because the scatter matrix is real and

symmetric, these eigenvectors are orthogonal.

They form a natural set of basis vectors for representing

any feature vector x. The coefficients ai are the components

of x in that basis and are called principal components.



Fisher Linear Discriminant

• Although PCA finds 
components that are useful 
for representing data, there 
is no reason to assume that 
these components must be 
useful for discriminating 
between data in different 
classes.

• Discriminant analysis seeks 
directions that are efficient 
for discrimination.

26



• We can reduce the dimensionality from d 
dimensions to one dimension if we merely 
project the d-dimensional data onto a line.

• By moving the line around, we might be able 
to find an orientation for which the projected 
samples are well separated. This is exactly the 
goal of classical discriminant analysis.

• Suppose that we have a set of n d-dimensional 

samples x1, ..., xn, n1 in the subset D1 labeled 

ω1 and n2 in the subset D2 labeled ω2. If we 

form a linear combination of the components 

of x, we obtain the scalar dot product
27
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y = wtx

and a corresponding set of n samples y1, ..., yn divided 

into the subsets Y1 and Y2.

Geometrically, if ||w|| = 1, each yi is the projection of 

the corresponding xi onto a line in the direction of w.

The magnitude of w is not important but its direction is.

If we imagine that the samples labeled ω1 fall more or 

less into one cluster while those labeled ω2 fall in 

another, we want the projections falling onto the line to 

be well separated, not thoroughly intermingled.
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FIGURE 3.5. Projection of the same set of samples onto two 

different lines in the directions marked w. The figure on the 

right shows greater separation between the red and black 

projected points.
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• Finding the best such direction w, one we hope will 
enable accurate classification.

• A measure of the separation between the projected 
points is the difference of the sample means.

• If mi is the d-dimensional sample mean given by

the sample mean for the projected points is given by

and is simply the projection of mi.
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The distance between the projected means is

and that we can make this difference as large as we wish merely

by scaling w.

To obtain good separation of the projected data we really want 

the difference between the means to be large relative to some 

measure of the standard deviations for each class.

Rather than forming sample variances, we define the scatter

for projected samples labeled ωi by

Thus,                         is an estimate of the variance of the pooled 

data, and                 is called the total within-class scatter of the 

projected samples.
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The Fisher linear discriminant employs that linear function wtx 

for which the criterion function

is maximum (and independent of ||w||).

While the w maximizing J(·) leads to the best separation 

between the two projected sets, we will also need a threshold

criterion before we have a true classifier. We first consider how 

to find the optimal w, and later turn to the issue of thresholds.

To obtain J(·) as an explicit function of w, we define the scatter 

matrices Si and scatter SW by
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and

Then we can write

therefore the sum of these scatters can be written

Similarly, the separations of the projected means obeys

where
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We call SW the Within-class scatter matrix. It is proportional to 

the sample covariance matrix for the pooled d-dimensional data. 

It is symmetric and positive semidefinite, and is usually 

nonsingular if n > d.

Likewise, SB is called the Between class scatter matrix. It is 

also symmetric and positive semidefinite, but because it is the 

outer product of two vectors, its rank is at most one. In 

particular, for any w, SBw is in the direction of m1 - m2, and 

SB is quite singular.

In terms of SB and SW, the criterion function J(·) can be written as

This expression is well known in mathematical physics as the 

generalized Rayleigh quotient.
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It is easy to show that a vector w that maximizes J(·) must satisfy

for some constant λ, which is a generalized eigenvalue problem.

Since SBw is in the direction of m1-m2 and the scale factor for w 

is immaterial the solution for the w that optimizes J(·) is

Thus, we have obtained w for Fisher’s linear discriminant — the 

linear function yielding the maximum ratio of between-class 

scatter to within-class scatter (called canonical variate).

This mapping is many-to-one, and in theory can not possibly 

reduce the minimum achievable error rate if we have a very 

large training set.
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● All that remains is to find the threshold, i.e., the point along the 

one-dimensional subspace separating the projected points.

●When the conditional densities p(x|ωi) are multivariate normal 

with equal covariance matrices Σ, we can calculate the threshold 

directly.

The optimal decision boundary is

and where w0 is a constant involving w and the prior probabilities.

● Thus, for the normal, equal-covariance case, the optimal decision 

rule is merely to decide ω1 if Fisher’s linear discriminant exceed 

some threshold, and to decide ω2 otherwise. (Choose w0 where the 

posteriors in the one-dimensional distributions are equal).

00 wt
xw  1

1 2,  w μ μ

• Let’s work some examples (class-independent PCA and LDA).

http://www.ece.msstate.edu/research/isip/projects/speech/software/demonstrations/applets/util/pattern_recognition/current/index.html

http://www.ece.msstate.edu/research/isip/projects/speech/software/demonstrations/applets/util/pattern_recognition/current/index.html
http://www.ece.msstate.edu/research/isip/projects/speech/software/demonstrations/applets/util/pattern_recognition/current/index.html
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FIGURE 5.6 (a) The optimal line resulting from Fisher’s criterion, 

for two Gaussian classes. Both classes share the same diagonal 

covariance matrix, with equal elements on the diagonal. The line is 

parallel to μ1-μ2. (b) The covariance matrix for both classes is 

nondiagonal. The optimal line is on the left. Observe that it is no 

more parallel to μ1-μ2. The line on the right is not optimal and the 

classes, after the projection, overlap.



38

Multiple Discriminant Analysis

• For the c-class problem, the natural generalization of 

Fisher’s linear discriminant involves c - 1 

discriminant functions.

• Thus, the projection is from a d-dimensional space to 

a (c -1)-dimensional space, and it is tacitly assumed 

that d ≥ c.  Within-class scatter matrix
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The proper generalization for SB is not quite so obvious. 

Suppose that we define a total mean vector m and a total 

scatter matrix ST by

Then it follows that
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The  2nd term is defined as a general Between-class scatter 

matrix, so that the total scatter is the sum of the Within-

class scatter and the between-class scatter:

For the 2-class case, the resulting between-class scatter 

matrix is n1n2/n times our previous definition.

The projection from d-dim to (c-1)-dim is done by c-1 
discriminant functions:

If the yi are viewed as components of a vector y and the weight 

vectors wi are viewed as the columns of a d-by-(c - 1) matrix W, 

then the projection can be written as a single matrix equation
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The samples x1, ..., xn project to a corresponding set of samples 

y1, ..., yn, which can be described by their own mean vectors 

and scatter matrices. Thus, if we define

It can be shown
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These equations show how the within-class and between-class 

scatter matrices are transformed by the projection to the lower 

dimensional space.

What we seek is a transformation matrix W that in some sense 

maximizes the ratio of the between-class scatter to the within-

class scatter.

A simple scalar measure of scatter is the determinant of the 

scatter matrix. The determinant is the product of the 

eigenvalues, and hence is the product of the “variances” in 

the principal directions, thereby measuring the square of 

the hyperellipsoidal scattering volume (ref. ch2).
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FIGURE 3.6. Three 3-dimensional distributions are projected onto two-dimensional 

subspaces, described by a normal vectors W1 and W2. Informally, multiple 

discriminant methods seek the optimum such subspace, that is, the one with the 

greatest separation of the projected distributions for a given total within-scatter matrix, 

here as associated with W1.
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Maximizing J(.)? → The columns of an optimal W are the 

generalized eigenvectors that correspond to the largest 

eigenvalues in

If SW is non-singular, this can be converted to a conventional 

eigenvalue problem as before. However, this is actually 

undesirable, since it requires an unnecessary computation of the 

inverse of SW. Instead, one can find the eigenvalues as the roots of 

the characteristic polynomial

and then solve

directly for the eigenvectors wi.

 0 WiB SS 

  0 iWiB wSS 
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Because SB is the sum of c matrices of rank* one or 

less, and because only c-1 of these are independent, SB

is of rank c-1 or less. Thus, no more than c - 1 of the 

eigenvalues are nonzero, and the desired weight 

vectors correspond to these nonzero eigenvalues.

If the within-class scatter is isotropic, the eigenvectors 

are merely the eigenvectors of SB, and the eigenvectors 

with nonzero eigenvalues span the space spanned by 

the vectors mi − m. In this special case the columns of 

W can be found simply by applying the Gram-Schmidt 

orthonormalization procedure to the c -1 vectors        

mi − m, i = 1, ..., c - 1.

* number of linearly independent rows or columns of a full matrix
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As in the two-class case, multiple discriminant analysis 

primarily provides a reasonable way of reducing the 

dimensionality of the problem. Parametric or 

nonparametric techniques that might not have been 

feasible in the original space may work well in the 

lower-dimensional space.
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.را میتوان همزمان توسط یک تبدیل خطی، قطری نمودŜBو ŜWدو ماتریس 

(Pattern Recognition.4th-Theodoridis-Koutroumbas)روش دوم تحلیل متمایز کننده چند کلاسه 
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که ماتریسهای پراکندگی درون کلاسی و بین کلاسی بردار تبدیل یافته زیر هستند

ˆ t t t y B y B W x

لازم بذکر است در تبدیل. قطری استD(l×l)و ماتریس B(l×l)ماتریس 
y بهŷ هیچ تلفاتی در مقدارJ3وجود نخواهد داشت زیرا:
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بردار ویژه بایستی انتخاب شوند؟dبردار ویژه از بین lکدام : سوال
نیز دارای رتبه(             تعداد کلاسهاستc)دارد c-1رتبه SBچون ماتریس 

c-1 است بنابراین                دارایc-1مقدار ویژه غیر صفر است.
 1

W B


S S

 1

W B


S S

.قطری و شامل مقادیر ویژه ماتریس             استDماتریس 
.شامل بردارهای ویژه ماتریس              در ستونهای خود استCماتریس 

 1

W B


S S

 1

W B


S S

c-1را که ستونهای آن شاملCانتخاب شود ماتریس l=c-1اگر : حالت اول
سپس بردار. بردار ویژه با نرم واحد ماتریس               است تشکیل میدهیم

.را تضمین میکندJ3این حداکثر مقدار . تبدیل یافته             را تشکیل میدهیم
بعدی در قدرت تفکیک پذیری کاهشی رخc-1بعدی به dیعنی در تبدیل 

:چون اثر یک ماتریس برابر مجموع مقادیر ویژه آن ماتریس است داریم. نمیدهد

 1

W B


S S

ˆ ty C x
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1

3, 1 1

1

ˆ3,

ˆ3, 1 1 3,

0

,     

W B c

t t t t

W B B W

c

J tr

J tr

J tr J

 

 









    

 

     

x

y

y x

S S

C S C C S C C S C C S CD

D

را محاسبه میکند یک قاعده خطی اپتیمالŷمولفه c-1تبدیل خطی         که 
J3بهینه گی نسبت به معیار )تابع متمایز کننده ارائه میدهد c-1است که 

است و تنها یک مقدار ویژه غیر صفرc=2در حالت خاص دوکلاسه (. میباشد
پس. دارد

.که همان متمایز کننده خطی فیشر است

tC x

  1

1 2
ˆ

t

W

 y μ μ S x

بردار ویژه ماتریسlشاملCانتخاب شود ماتریس l<c-1اگر : حالت دوم
J3البته این حداکثر مقدار .  تشکیل میدهیمبزرگترین مقدار ویژهlمتناظر با 

.استJ3,ŷ<J3,xولی . را حاصل میکند



Other Scatter Matrices Criteria

• The sum of squared error is defined as

• The trace (sum of diagonal elements) is the 

simplest scalar measure of the scatter matrix, as 

it is proportional to the sum of the variances in 

the coordinate directions
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