
1

Chapter 3 (part 2):

Maximum-Likelihood and Bayesian 

Parameter Estimation

• Bayesian Estimation (BE)

• Bayesian Parameter Estimation: Gaussian Case

• Bayesian Parameter Estimation: General Estimation

• Sufficient Statistics
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• 3.3 Bayesian Estimation (Bayesian 

learning to pattern classification problems)

– In MLE  was supposed fixed

– In BE  is a random variable

– The computation of posterior probabilities P(i|x) lies 

at the heart of Bayesian classification

– But what If the priors and class-conditional densities 

are unknown?

– Goal: compute P(i|x) using all of the information at 

our disposal such as P(i) and p(x|i)  P(i|x, D).

Given the sample D, Bayes formula can be written
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• Supervised case → we separate the training 

samples by class into c subsets D1, ..., Dc, 

with the samples in Di belonging to ωi.

• In most cases of interest the samples in Di

have no influence on p(x|ωj, D) if i≠j.

• Suppose priors are known; P(ωi)=P(ωi|D) 
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The Parameter Distribution

• The desired probability density p(x) is 
unknown. We assume that it has a known 
parametric form (vector θ).

• So, the function p(x|θ) is completely known.

• Any information we might have about θ prior 
to observing the samples is assumed to be 
contained in a known prior density p(θ).

• Observation of the samples converts this to a 
posterior density p(θ|D), which, we hope, is 
sharply peaked about the true value of θ.
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• Note that we are changing our supervised learning 

problem (pdf)  into an unsupervised density 

estimation problem (parameter vector).

• Our basic goal is to compute p(x|D), which is as 

close as we can come to obtaining the unknown p(x).

• We do this by integrating the joint density p(x, θ|D) 

over θ. 

• We can write p(x, θ|D) as the product p(x|θ, D) p(θ|D). 

Since the selection of x and that of the training 

samples in D is done independently, p(x|θ, D) is merely 

p(x|θ).
(25)( | ) ( | ) ( | )p p p dx x θ θ θ D D
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(25)( | ) ( | ) ( | )p p p dx x θ θ θ D D
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Looking more carefully at (25) and assuming that p(θ|D) is 

known, then p(x|D) is nothing but the average of p(x|θ) with 

respect to θ, that is,  ( | ) ( | )p E pθx x θD

If we assume that a large enough number of samples θi , i = 1, 2 ... , L, of the 

random vector θ are available, one can compute the corresponding values 

p(x|θi) and then approximate the expectation as the mean value

1

1
( | ) ( )

L

i

i

p p
L

x x θ


 D



7

• Bayesian estimation approach estimates a distribution 
for p(x|D) rather than making point estimates like ML.

• This key equation links the desired class-conditional 
density p(x|D) to the posterior density p(θ|D) for the 
unknown parameter vector.

• If p(θ|D) peaks very sharply about some value   , we 
obtain p(x|D) ≈ p(x|   ), i.e., the result we would obtain 
by substituting the estimate    for the true parameter θ.

• When the unknown densities have a known parametric 
form, the samples exert their influence on p(x|D) 
through the posterior density p(θ|D).

• We should also point out that in practice, the 
integration in Eq. 25 is often performed numerically, 
for instance by Monte-Carlo simulation.
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3.4 Bayesian Parameter Estimation:

Gaussian Case

Goal: use Bayesian estimation techniques to 
calculate the a posteriori density p(|D) and 
the desired probability density p(x|D) for the 
case where 

• The univariate case: p(|D)

 is the only unknown parameter

0 and 0 are known!
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• Roughly speaking, μ0 represents our best a priori 
guess for μ, and measures our uncertainty about 
this guess.

• Imagine that a value is drawn for μ from a 
population governed by the probability law p(μ).
Once this value is drawn, it becomes the true value 
of μ and completely determines the density for x.

• Suppose now that n samples x1, ..., xn are 
independently drawn from the resulting 
population. Letting D = {x1, ..., xn}, we use Bayes’ 
formula to obtain
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where α is a normalization factor that depends on D but 

is independent of μ.

This equation shows how the observation of a set of 

training samples affects our ideas about the true value 

of μ; it relates the prior density p(μ) to an a posteriori 

density p(μ|D).
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Identifying (1) and (2) yields:

• Where factors that do not depend on μ have been absorbed into 

the constants α, α΄, and α˝. Thus, p(μ|D) is an exponential 

function of a quadratic function of μ, i.e., is again a normal 

density. 

• Since this is true for any number of training samples, p(μ|D) 

remains normal as the number n of samples is increased, and 

p(μ|D) is said to be a reproducing density and p(μ) is said to be a 

conjugate prior.

If we write 2(  |  ) ~ ( , )    (2)n np N  D
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We solve explicitly for μn and σ2
n and obtain

where      is the sample mean

● μn represents our best guess for μ after observing n samples, 

and σ2
n measures our uncertainty about this guess.

● σ2
n decreases monotonically with n. Each additional 

observation decreases our uncertainty about the true value of μ.

● The relative balance between prior knowledge and empirical

data is set by the ratio of σ2 to σ2
0, which is sometimes called 

the dogmatism.
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FIGURE 3.2. Bayesian learning of the mean of normal 

distributions in one dimension. The posterior distribution 

estimates are labeled by the number of training samples used in 

the estimation.

• The posterior, p(µ|D), becomes more sharply peaked as n

grows large. This is known as Bayesian learning.
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FIGURE 3.2. Bayesian learning of the mean of normal 

distributions in two dimensions. The posterior distribution 

estimates are labeled by the number of training samples used in 

the estimation.
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• The univariate case: p(x|D)
• p(|D) computed

• p(x|D) remains to be computed! (p(x|D) is really p(x|ωi, Di).)

• From

We have
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where

That is, as a function of x, p(x|D) is proportional to 

exp[−(1/2)(x-μn)
2/(σ2 +σ2

n)], and hence p(x|D) is normally 

distributed with mean μn and variance σ2 +σ2
n:

In other words, to obtain the class-conditional density p(x|D), 

whose parametric form is known to be p(x|μ) ~ N(μ, σ2), we 

merely replace μ by μn and σ2 by σ2 +σ2
n.

(Desired class-conditional density p(x|Dj, j))  Therefore: 

p(x|D j,  j) together with P(j) and using Bayes formula, 

we obtain the Bayesian classification rule:
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A sequence of the posterior pdf estimates. As the number of training points 

increases, the posterior pdf becomes more spiky (the ambiguity decreases)

and its center moves toward the true mean value of the data [Theo09].
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The Multivariate Case

• The treatment of the multivariate case in which Σ is 

known but μ is not, is a direct generalization of the 

univariate case.

• where Σ, Σ0, and μ0 are assumed to be known.

• After observing a set D of n independent samples x1, 

..., xn, we use Bayes’ formula to obtain
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which has the form

Thus, p(μ|D) ~ N(μn,Σn), and once again we have a reproducing

density.

The solution of these equations for μ and Σn is simplified by 

knowledge of the matrix identity
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After a little manipulation

The proof that p(x|D) ~ N(μn,Σ+Σn) can be obtained as 

before by performing the integration

Or, if x=μ+y and p(μ|D) ~ N(μn,Σn) and p(y) ~ N(0,Σ). Since

the sum of two independent, normally distributed vectors is 

again a normally distributed vector whose mean is the sum of

the means and whose covariance matrix is the sum of the 

covariance matrices we have
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• Bayesian Parameter Estimation: General 
Theory

– The Bayesian approach has been applied to compute 
p(x|D). It can be applied to any situation in which the 
unknown density can be parameterized:

The basic assumptions are:

• The form of p(x|) is assumed known, but the value of 
 is not known exactly.

• Our knowledge about  is assumed to be contained in a 
known prior density p()

• The rest of our knowledge about  is contained in a set 
D of n random variables x1, x2, …, xn that follows p(x)
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The basic problem is:

“Compute the posterior density p(|D)”

then “Derive p(x|D)”

Using Bayes’ formula, we have:

And by independence assumption:
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Suppose that p(D |θ) reaches a sharp peak at         . If the 

prior density p(θ) is not zero at and does not 

change much in the surrounding neighborhood, then 

p(θ| D) also peaks at that point.

From (25)

p(x| D) will be approx.             , which is the ML result.  

If the peak of p(D |θ) is very sharp, then the influence of 

prior information on the uncertainty in the true value of 

θ can be ignored.

θθ ˆ

θθ ˆ

)ˆ|( θxp

However, the Bayes solution tells us how to use all of 

the available information to compute the desired 

density p(x|D).

( | ) ( | ) ( | )p p p dx x θ θ θ D D
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Two questions remain: the difficulty of carrying out these

Computations and the convergence of p(x|D) to p(x).

Convergence: Dn = {x1, ..., xn}.

1
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…Sufficient statistics
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● This is called the Recursive Bayes Incremental or on-line 

Learning because we have a method for incrementally 

updating our estimates.
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Example 1: Recursive Bayes learning

Suppose we believe our one-dimensional samples come

from a uniform distribution

We know only that our parameter is bounded, 0< θ ≤ 10

D = {4, 7, 2, 8} selected randomly from the underlying

distribution.

We have p(θ|D0) = p(θ) = U(0, 10).



28

The 1st data x1 = 4 arrives

The 2nd data  x2 = 7 arrives
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So we have

1
( / ) , max [ ] 10n n

xn
p D for D 


  
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Given our full data set, the maximum likelihood solution

here is clearly            , and this implies a uniform 

p(x|D) ~ U(0, 8).

According to our Bayesian methodology, which requires 

the integration in Eq. 49, the density is uniform up to 

x=8, but has a tail at higher values — an indication that 

the influence of our prior p(θ) has not yet been swamped 

by the information in the training data.

8ˆ θ

p(θ/D0)

p(θ/D4) peaks at ˆ 8 
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Whereas the maximum likelihood approach estimates a 

point in θ space, the Bayesian approach instead 

estimates a distribution. Technically speaking, then, we

cannot directly compare these estimates. It is only 

when the second stage of inference is done — that is, 

we compute the distributions p(x|D), as shown in the 

above figure — that the comparison is fair.

ML estimate:          
ˆ( / ) ~ (0,8)p x U

Bayesian estimate: 

( | ) ( | ) ( | )p p p dx x θ θ θ D D

( | ) ( | ) ( | )p x p x p x d  D D
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Identifiablity
• For most of the typically encountered probability densities 

p(x|θ), the sequence of posterior densities does indeed converge 

to a delta function. This implies that with a large number of 

samples there is only one value for θ that causes p(x|θ) to fit the 

data, i.e., that θ can be determined uniquely from p(x|θ).

• When this is the case, p(x|θ) is said to be identifiable.

• There are occasions, when more than one value of θ may yield 

the same value for p(x|θ). In such cases, θ cannot be determined 

uniquely from p(x|θ), and p(x|Dn) will peak near all of the values 

of θ that explain the data. Fortunately, this ambiguity is erased 

by the integration in Eq. 26, since p(x|θ) is the same for all of 

these values of θ. Thus, p(x|Dn) will typically converge to p(x) 

whether or not p(x|θ) is identifiable.
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• Given a large number of samples, p(θ|Dn) will have a very 

strong peak at      ; in this case:

• There are cases where p(θ|Dn) contains more than one peaks 

(i.e., more than one θ explains the data); in this case, the 

solution p(x|θ) should be obtained by integration.

• In general, p(x|Dn) converges to p(x| θ) whether or not 

having one maximum.

( / ) ( / ) ( / )p D p p D d x x θ θ θ

ˆ( / ) ( / )p D px x θ

θ̂
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When do Maximum Likelihood and 

Bayes methods differ?

• Maximum likelihood and Bayes solutions are 
equivalent in the asymptotic limit of infinite 
training data.

• Computational complexity: maximum 
Likelihood methods are often to be preferred 
since they require merely differential calculus 
techniques or gradient search for    , rather than 
a possibly complex multidimensional 
integration needed in Bayesian estimation.

θ̂
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• Interpretability: In many cases the maximum 
likelihood solution will be easier to interpret 
and understand since it returns the single best 
model from the set the designer provided.

• In contrast Bayesian methods give a weighted 
average of models (parameters), often leading 
to solutions more complicated and harder to 
understand than those provided by the 
designer. The Bayesian approach reflects the 
remaining uncertainty in the possible models.

• The prior information: such as in the form of 
the underlying distribution p(x|θ).
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• A maximum likelihood solution must of 
course be of the assumed parametric form; not so for 
the Bayesian solution.

• In Example 1, the Bayes solution was not of the 
parametric form originally assumed, i.e., a uniform 
p(x|D). In general, through their use of the full p(θ|D)
distribution Bayesian methods use more of the 
information brought to the problem than do 
maximum likelihood methods.

• If the information is reliable, Bayes methods can be 
expected to give better results.

• Further, general Bayesian methods with a “flat” or 
uniform prior (i.e., where no prior information is 
explicitly imposed) are equivalent to maximum 
likelihood methods.

)ˆ|( θxp
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• When p(θ|D) is broad, or asymmetric around    , the 
methods are quite likely to yield p(x|D) distributions 
that differ from one another.

Sources of classification error
• Bayes or indistinguishability error: the error due to 

overlapping densities p(x|ωi) for different values of i. 
This error is an inherent property of the problem and 
can never be eliminated.

• Model error: the error due to having an incorrect 
model. The model error in ML and Bayes methods 
rarely differ.

• Estimation error: the error arising from the fact that 
the parameters are estimated from a finite sample. 
Can be reduced by increasing the training data.

θ̂
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* Noninformative Priors and Invariance

• The information about the prior is based on the designer’s knowledge of 

the problem domain.

• We expect the prior distributions to be “translation and scale invariance” –

they should not depend on the actual value of the parameter.

• A prior that satisfies this property is referred to as a 

“noninformative prior”:

 The Bayesian approach remains applicable even when little or no prior 

information is available.

 Such situations can be handled by choosing a prior density giving equal 

weight to all possible values of θ. 

 Priors that seemingly impart no prior preference, the so-called 

noninformative priors, also arise when the prior is required to be invariant 

under certain transformations. 

 Frequently, the desire to treat all possible values of θ equitably leads to 

priors with infinite mass. Such noninformative priors are called improper 

priors.



ECE 8443: Lecture 07, Slide 39

Example of Noninformative Priors

• For example, if we assume the prior distribution of a mean of a continuous 

random variable is independent of the choice of the origin, the only prior 

that could satisfy this is a uniform distribution (which isn’t possible).

• Fisher argued that Not knowing the chance of mutually exclusive events and 

knowing the chance to be equal are two quite different states of knowledge.

• If we have no information about θ we also have no information about for 

example  1/θ but a uniform prior on θ  does not correspond to a uniform 

prior for 1/θ.
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*Sufficient Statistics

• Practically the direct computation and tabulation of 
p(D|θ) or p(θ|D) is very difficult.

• An analytic and computationally feasible maximum 
likelihood  solution lies in being able to find a 
parametric form for p(x|θ) that on the one hand 
matches the characteristics of the problem and on the 
other hand allows a reasonably tractable solution.

• Learning the parameters of a multivariate Gaussian 
density → the sample mean and sample covariance.

• What about other distributions?
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• A sufficient statistic is a (possibly vector-valued) 

function s of the samples D that contains all of the 

information relevant to estimating some parameter θ. 

→ p(θ|s,D) = p(θ|s). → Treating θ as a random 

variable, limiting the definition to a Bayesian domain.

• To avoid such a limitation, the conventional 

definition is as follows: A statistic s is said to be 

sufficient for θ if p(D|s,θ) is independent of θ. If we 

think of θ as a random variable, we can write

( | , ) ( | )
( | , ) ( | )

( | )

p p
p p

p

s θ θ s
θ s θ s

s
 

D
D

D

Sufficient statistics are summary statistics of a dataset which are such 

that the distribution of the data is independent of the parameters of 

the underlying distribution when conditioned on the statistic.
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• It becomes evident that p(θ|s,D) = p(θ|s) if s is 

sufficient for θ. Conversely, if s is a statistic for 

which p(θ|s,D) = p(θ|s), and if p(θ|s)≠0, it is easy 

to show that p(D|s, θ) is independent of θ.

• For a Gaussian distribution the sample mean and 

covariance, taken together, represent a sufficient 

statistic for the true mean and covariance; if these 

are known, all other statistics such as the mode, 

range, higher-order moments, number of data 

points, etc., are superfluous when estimating the 

true mean and covariance.
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• Any function of the samples D is a statistic.

• A sufficient statistic is a function s=φ(D) of the 

samples D that contains all the information 

necessary for estimating the parameters θ.

• Using sufficient statistics, we can make the 

computation of p(D|θ) or p(θ|D) much less 

expensive.
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• A fundamental theorem concerning sufficient 
statistics is the Factorization Theorem, which 
states that s is sufficient for θ if and only if 
p(D|θ) can be factored into the product of two 
functions, one depending only on s and θ, and 
the other depending only on the training 
samples.

• The virtue of the Factorization Theorem is that 
it allows us to shift our attention from the 
rather complicated density p(D|s, θ), used to 
define a sufficient statistic, to the simpler 
function

1

( | ) ( | )
n

k

k

p pθ x θ


D
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Factorization

• Theorem 3.1(Factorization) A statistic s is sufficient 
for θ if and only if the probability P(D|θ) can be 
written as the product 

P(D|θ) = g(s, θ)h(D), 

for some function h(·).

• There are trivial ways of constructing sufficient 
statistics. For example we can define s to be a vector 
whose components are the n samples themselves: x1, 
..., xn. In that case g(s, θ) = p(D|θ) and h(D) = 1.

• The factoring of p(D|θ) into g(s, θ)h(D) is not unique.
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• If f(s) is any function of s, then g΄(s, θ) = f(s)g(s, θ) 

and h΄(D) = h(D)/f(s) are equivalent factors. This kind 

of ambiguity can be eliminated by defining the kernel 

density.

which is invariant to this kind of scaling.

• Significance: most practical applications of parameter 

estimation involve simple sufficient statistics and 

simple kernel densities.

• It can be shown that for any classification rule, we 

can find another based solely on sufficient statistics 

that has equal or better performance.

(63)( , )
( | )

( , )

g
g

g d




s θ
s θ

s θ θ
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• So we can reduce an extremely large data set down to 

a few numbers — the sufficient statistics.

• In the case of maximum likelihood estimation, when 

searching for a value of θ that maximizes p(D|θ) = g(s, 

θ)h(D), we can restrict our attention to g(s, θ).

• In ML, the normalization provided by the kernel 

density is of no particular value unless               is 

simpler than g(s, θ). 

• The significance of the kernel density is revealed 

however in the Bayesian case. If we substitute p(D|θ) 

= g(s, θ)h(D) in Eq. 50, we obtain

(64)

),( θsg

( | ). ( )
( | ) ,

( | ). ( )

p p
p

p p d

θ θ
θ

θ θ θ




D
D

D

( | ). ( )
( | ) ,

( | ). ( )

g p
p

g p d

s θ θ
θ

s θ θ θ



D
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• If our prior knowledge of θ is very vague, p(θ) will 
tend to be uniform, or changing very slowly as a 
function of θ. So p(θ|D) is approximately the same as 
the kernel density.

• Roughly speaking, the kernel density is the posterior 
distribution of the parameter vector when the prior 
distribution is uniform.

• When p(x|θ) is identifiable and when the number of 
samples is large, g(s, θ) usually peaks sharply at some 
value    .

• If the a priori density p(θ) is continuous at   and 
if is not zero, p(θ|D) will approach the kernel 
density  

θθ ˆ

θθ ˆ
)ˆ(θp

( , ).g s θ
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Sufficient Statistics and the Exponential Family

• How Factorization Theorem can be used to obtain sufficient 

statistics? Consider the familiar d-dimensional normal case 

with fixed covariance but unknown mean, i.e., p(x|θ) ~
N(θ,Σ). Here we have
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• This factoring isolates the θ dependence of 

p(D|θ) in the first term, and hence from the 

Factorization Theorem we conclude that          

is sufficient for θ.

• The sample mean                     is also sufficient 

for θ. Using this statistic, we can write

• From using Eq. 63, or by completing the 

square, we can obtain the kernel density:
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• These results make it immediately clear that           

is the maximum likelihood estimate for θ. The 

Bayesian posterior density can be obtained 

from              by performing the integration 

indicated in Eq. 64. If the a priori density is 

essentially uniform,

• The same general approach can be used to find 

sufficient statistics for other density functions 

like exponential, Rayleigh, Poisson, and many 

other familiar distributions. They can all be 

written in the form

(69)
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• If we multiply n terms of the form in Eq. 69 

we find

where we can take
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Table 3.1:Common Exponential Distributions and their Sufficient Statistics.
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Certain probability distributions do not have sufficient statistics (e.g., Cauchy)


