
Chapter 3 (part 1):

Maximum-Likelihood & Bayesian 

Parameter Estimation

• Introduction

• Maximum-Likelihood Estimation

– Example of a Specific Case

– The Gaussian Case: unknown  and 

– Bias

• Appendix: ML Problem Statement

All materials used in this course were taken from the textbook “Pattern Classification” by Duda et al., John Wiley & Sons, 2001 

with the permission of the authors and the publisher
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• Introduction

– Data availability in a Bayesian framework

• We could design an optimal classifier if we knew:

– P(i) (priors)

– p(x|i) (class-conditional densities)

Unfortunately, we rarely have this complete 

information!

– Design a classifier from a training sample

• No problem with prior estimation

• Samples are often too small for class-conditional 

estimation (large dimension of feature space!)
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– A priori information about the problem

– Normality of p(x|i)

p(x|i) ~ N(i, i)

• Characterized by 2 parameters

– Estimation techniques

• Maximum-Likelihood (ML), maximum a posteriori 
(MAP) and the Bayesian estimations

• Results are nearly identical, but the approaches are 
different
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• Parameters in ML estimation are fixed but unknown!

• Best parameters are obtained by maximizing the 

probability of obtaining the samples observed.

• Bayesian methods view the parameters as random 

variables having some known distribution.

• In the Bayesian case, we shall see that a typical effect of 

observing additional samples is to sharpen the a 

posteriori density function, causing it to peak near the 

true values of the parameters. This phenomenon is 

known as Bayesian learning.
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• In either approach, we use p(x|i) for our 

classification rule!

• Supervised vs unsupervised learning

– In both cases, samples x are assumed to be obtained by 

selecting a state of nature i  with probability P(i), and 

then independently selecting x according to the 

probability law p(x|i).

– The distinction is that with supervised learning we know 

the state of nature (class label) for each sample, whereas 

with unsupervised learning we do not.
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Maximum-Likelihood Estimation

• Has good convergence properties as the sample size 

increases.

• Simpler than any other alternative techniques.

– General principle

• Assume we have c classes and

p(x|j) ~ N(j, j)

p(x|j)  p(x|j, j) where:

1 2 11 22( , ) ( , ,..., , ,...,cov( , )...)m n

j j j j j j j j jμ σ σ x x θ μ Σ
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• Use the information provided by the training samples to 
estimate   = (1, 2, …, c). i (i = 1, 2, …, c) is associated 
with each category.

• Suppose that D contains n samples, x1, x2,…, xn were drawn 
independently

• ML estimate of  is, by definition the value that  

maximizes p(D | )

“It is the value of  that best agrees with the actually observed 
training sample”
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FIGURE 3.1. The top graph shows several training points in

one dimension, known or assumed to be drawn from a Gaussian

of a particular variance, but unknown mean. Four of the infinite

number of candidate source distributions are shown in dashed

lines. The middle figure shows the likelihood p(D|θ) as a

function of the mean. If we had a very large number of training

points, this likelihood would be very narrow. The value that

maximizes the likelihood is marked ; it also maximizes the

logarithm of the likelihood—that is, the log-likelihood l(θ),

shown at the bottom. Note that even though they look similar,

the likelihood p(D|θ) is shown as a function of θ whereas the

conditional density p(x|θ) is shown as a function of x.

Furthermore, as a function of θ, the likelihood p(D|θ) is not a

probability density function and its area has no significance.

̂



11

• For analytical purposes, it is usually easier to work 

with the logarithm of the likelihood than with the 

likelihood itself.

• If p(D|θ) is a well behaved, differentiable function of 

θ,      can be found by the standard methods of 

differential calculus.

• Optimal estimation  (number of parameters to be set is p)

– Let  = (1, 2, …, p)
t and let  be the gradient operator

θ̂
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p  
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• We define l() as the log-likelihood function

l() = ln p(D|)

– New problem statement:

determine  that maximizes the log-likelihood

)(max argˆ θθ
θ

l

where the dependence on the data set D is implicit

Thus                                                    we have
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Set of necessary conditions for an optimum is:
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A solution of could represent a true global 

maximum, a local maximum or minimum, or (rarely) 

an inflection point of l(θ).

One must be careful, too, to check if the extremum 

occurs at a boundary of the parameter space, which 

might not be apparent from the solution to this Eq.
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• We note in passing that a related class of estimators —

maximum a posteriori or MAP estimators — find the 

value of θ that maximizes l()+ln p(), where p()

describes the prior probability of different parameter 

values. (l()+ln p()=ln p(D|)p()=ln p(|D) p(D))

• Thus a ML estimator is a MAP estimator for the 

uniform or “flat” prior.

• A MAP estimator finds the peak, or mode of a 

posterior density. The drawback of MAP estimators is 

that if we choose some arbitrary nonlinear 

transformation of the parameter space (e.g., an overall 

rotation), the density will change, and our MAP 

solution need no longer be appropriate.



Example of a specific case: unknown 

– p(xi|) ~ N(, )

(Samples are drawn from a multivariate normal 
population)

 =  therefore:

– The ML estimate for  must satisfy:
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• Multiplying by  and rearranging, we obtain:

(Just the arithmetic average of the samples of 

the training samples!)

Conclusion: 

“If p(xk|j) (j = 1, 2, …, c) is supposed to be Gaussian in a d

dimensional feature space; then we can estimate the vector 

 = (1, 2, …, c)
t and perform an optimal classification !”
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ML Estimation: 

Gaussian Case: unknown  and 

 = (1, 2)
t = (, 2)t single point
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Summation (Applying above eq. to the full log-

likelihood leads to the conditions):

Combining (1) and (2), one obtains (By substituting                   

and doing a little rearranging):
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The multivariate case
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• Does the maximum likelihood estimate of the variance converge to the true 

value of the variance? Let’s start with a few simple results we will need 

later.

• Expected value of the ML estimate of the mean:
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• The expected value of xixj will be 2 for i  j since the two random variables 

are independent.

• The expected value of xi
2 will be 2 + 2.

• Hence, in the summation above, we have n2-n terms with expected value 2

and n terms with expected value 2 + 2.

• Thus,
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• We see that the variance of the estimate goes to zero as n goes to infinity, 

and our estimate converges to the true estimate (error goes to zero).

which implies:
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• Bias

– ML estimate for 2 is biased because:

– An elementary unbiased estimator for  is:
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Unbiased Estimator
• If an estimator is unbiased for all distributions, as for 

example the variance estimator, then it is called 

absolutely unbiased. 

• If the estimator tends to become absolutely unbiased 

as the number of samples becomes very large, then 

the estimator is asymptotically unbiased.

• Clearly,                                and       is asymptotically 

unbiased. 

• What the existence of two actually shows is that no 

single estimate possesses all of the properties we 

might desire.

 ˆ ( 1) / ,n n C Σ Σ̂
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Model error
• If we have a reliable model for the underlying 

distributions and their dependence upon the parameter 
vector θ, the maximum likelihood classifier will give 
excellent results.

• But what if our model is wrong? For instance, what if we 
assume that a distribution comes from N(μ, 1) but instead 
it actually comes from N(μ, 10)?

• Will the value we find for θ = μ by maximum likelihood 
yield the best of all classifiers of the form derived from 
N(μ, 1)?

• No. This points out the need for reliable information 
concerning the models — if the assumed model is very 
poor, we cannot be assured that the classifier we derive is 
the best, even among our model set.



Maximum a Posteriori Probability Estimation†

• We consider θ as a random vector, and we will 

estimate its value on the condition that samples x1, . . 

. , xN have occurred.

• The maximum a posteriori probability (MAP) 

estimate        is defined at the point where p(θ|X) 

becomes maximum

• The difference between the ML and the MAP 

estimates lies in the involvement of p(θ) in the latter 

case.
26
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† Pattern Recognition.4th Ed.-Theodoridis-Koutroumbas
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Example 2.4 (Maximum a Posteriori Probability Estimation)

Let x1, x2, ... , xN be vectors stemmed from a normal 

distribution with known covariance matrix and unknown 

mean, that is,

And the unknown mean vector µ is known to be normally distributed as

The MAP estimate is given by the solution of
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We observe that if                   that is, the variance        is 

very large and the corresponding  Gaussian is very wide 

with little variation over the range of interest, then


