
Ch2-4: Bayesian Belief Networks

• We assumed, that we could parameterize the

probability distributions by a vector θ. If we

had prior information about θ, this too could

be used.

• Sometimes our knowledge about a distribution

is not directly expressed by a parameter vector,

but instead about the statistical dependencies

(or independencies) or the causal relationships

among the component variables.
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Also known as Bayesian Networks, Causal Probabilistic 

Networks, Probabilistic Influence Diagrams, etc.)
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Conditional Independence

Variables A and B are conditionally 

independent given C if any of the following 

hold:

• P(A, B | C) = P(A | C) P(B | C)

• P(A | B, C) = P(A | C)

• P(B | A, C) = P(B | C)

Knowing C tells me everything about B. I don’t gain 

anything by knowing A (either because A doesn’t 

influence B or because knowing C provides all the 

information knowing A would give)
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FIGURE 2.23. A three-dimensional distribution which obeys

p(x1,x3) = p(x1)p(x3); thus here x1 and x3 are statistically

independent but the other feature pairs are not.



• There are many such cases where we know —
or can safely assume — which variables are or 
are not causally related, even if it may be more 
difficult to specify the precise probabilistic 
relationships among those variables.

• For instance, we know that the oil pressure in 
the engine and the air pressure in a tire are not 
causally related while the engine temperature 
and oil temperature are causally related.

• We represent these causal dependencies 
graphically by means of Bayesian belief nets, 
also called causal networks, or simply belief 
nets.

4



• Each node (or unit) represents one of the system 
components, and here it takes on discrete values. 
We label nodes A, B, ... and their variables by the 
corresponding lowercase letter. Thus, while there 
are a discrete number of possible values of node 
A — for instance two, a1 and a2 — there may be 
continuous-valued probabilities on these discrete 
states.

• Each link in the net is directional and joins two 
nodes; the link represents the causal influence of 
one node upon another.

• Nodes immediately before that node — called its 
parents P — and the set of those immediately 
parent after it — called its children C.
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Each node in the graph is a 

random variable

Informally, an arrow from 

node X to node Y means X

has a direct influence on Y
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FIGURE 2.25. A portion of a belief network, consisting of

a node X, having variable values (x1, x2, . . .), its parents

(A and B), and its children (C and D).



The belief

• The belief of a set of propositions x = (x1, x2, ...) on 

node X describes the relative belief probabilities of 

the variables given all the evidence e throughout the 

rest of the network, i.e., P(x|e) or BEL(x).

• We can divide the dependency of the belief upon the 

parents and the children in the following way:
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where e represents all evidence (i.e., values of 

variables on nodes other than X), eP the evidence 

on the parent nodes, and eC the children nodes.
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where Cj represents the jth child node and eCj the values of the 

probabilities of its states. |C| denotes the cardinality of set C 

— the number of elements in the set — a convenient notation 

for indicating the full range of summations or products.

This equation simply states that the probability of a given set 

of states throughout all the children nodes of X is the product 

of the (independent) probabilities in the individual children 

nodes. For instance
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Incorporating evidence from parent nodes is a bit more subtle.

We have:

Here Pmn denotes a particular value for state n on parent node Pm.

For the purposes of clarity and for computing x, each term at 

the extreme right, P(P1i|eP1
) can be considered to be P(P1i) —

the probability of state i on the first parent node.

For the sake of computing the probabilities at X we 

temporarily ignore the dependencies beyond the parents and 

children of X.
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Thus we rewrite Eq. 82 as

We put these results together for the general case with |P| parent

nodes and |C| children nodes and find

The first factor is due the children (the product of children’s

independent likelihoods). The second is the sum over all

possible configurations of states on the parent nodes of the

prior probabilities of their values and the conditional

probabilities of the x variables given those parent values. The

final values must be normalized to represent probabilities.



The conditional probability tables

• Through a direct application of Bayes rule, we 
can determine the probability of any configuration 
of variables in the joint distribution. To proceed, 
though, we also need the conditional probability 
tables, which give the probability of any variable 
at a node for each conditioning event — that is, 
for the values of the variables in the parent nodes.

• Each row in a conditional probability table sums 
to 1, as its entries describe all possible cases for 
the variable.
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• If a node has no parents, then the table just 

contains the prior probabilities of the variables.

• Since the network and conditional probability 

tables contain all the information of the 

problem domain, we can use them to calculate 

any entry in the joint probability distribution, 

as illustrated in Example 4.
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Belief network for fish
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A

DC

X

B
A season: a1 = winter, a2 = spring, 

a3 = summer and a4 = autumn.

B Locale: b1 = north Atlantic and 

b2 = south Atlantic.

X fish: x1 = salmon and x2 = sea bass

C lightness: c1 = dark, c2 =medium 

and c3 = light.

D thickness: d1 = thick and d2 = thin.



The probability matrixes

15

each row is normalized, like
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The conditional probabilities for the variables in the 

children nodes are as follows:

Now we turn to the problem of using such a belief net

to infer the identity of a fish. We have no direct

information about the identity of the fish, and thus

P(x1) = P(x2) = 0.5. This might be a reasonable

starting point, expressing our lack of knowledge of

the identity of the fish. Our goal now is to estimate

the probabilities P(x1|e) and P(x2|e).
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and thus P(x1) = P(x2), as we would expect.

Now we collect evidence for each node, {eA, eB, eC, eD}, 

assuming they are independent of each other.
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If it is winter, thus P(a1|eA) = 1 and P(ai|eA) = 0 for i = 2, 3, 4.

we assume that P(b1|eB) = 0.2 and P(b2|eB) = 0.8.

We measure the fish and find that it is fairly light, and set by 

hand to be P(eC|c1) = 1, P(eC|c2) = 0.5, and P(eC|c3) = 0.

Suppose that due to occlusion, we cannot measure the width 

of the fish; we thus set P(eD|d1) = P(eD|d2).
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A similar calculation gives 

We now turn to the children nodes we find

2( ) 0.18.PP x 
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A similar calculation gives . We put these 

estimates together as products and 

renormalize (i.e., divide by their sum). Thus our final 

estimates for node X are:

Thus given all the evidence throughout the belief net, the most 

probable outcome is x1 = salmon.

)()()( iPiCi xPxPxP 
2( ) 0.85CP x 
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Example 4: Belief Network for fish

Conditional Probability Tables



• There exist algorithms for learning these 
probabilities from data…

• We can compute the probability of any configuration 
of variables in the joint density distribution:
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• Now we can determine the value of any entry in the 
joint probability, for instance the probability that the 
fish was caught in the summer in the north Atlantic 
and is a sea bass that is dark and thin:

P (a3, b1, x2, c3, d2) = P (a3) × P(b1) × P(x2|a3, b1) ×
P(c3|x2) × P(d2|x2)= 0.25 × 0.6 × 0.6 × 0.5 × 0.4       
= 0.018.

--------------------------------------------------------------------------------------------------------------------

• We now illustrate more fully how to exploit the 
causal structure in a Bayes belief net when 
determining the probability of its variables.

• Suppose we wish to determine the probability 
distribution over the variables d1, d2, ... at D in the 
left network of next Figure using the conditional 
probability tables and the network topology.
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A B DC

P(a)       P(b|a)    P(c|b)     P(d|c)

G

E

F

H

P(e)

P(g|e)
P(f|e)

P(h|f,g)

Figure 2.25: Two simple

belief networks. The one on

the left is a simple linear

chain, the one on the right a

simple loop. The conditional

probability tables are

indicated, for instance, as

P(h|f,g).



• We evaluate this by summing the full joint 

distribution, P(a, b, c, d), over all the 

variables other than d:
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If we wanted the probability of a particular value of 

D, for instance d2, we would compute

Now consider computing the probabilities of the 

variables at H in the network with the loop on the 

right of Fig. 2.25. Here we find

▲
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Bayes belief nets are most useful in the case where are given the

values of some of the variables — the evidence — and we seek

to determine some particular configuration of other variables.

Thus in our fish example we might seek to determine the

probability that a fish came from the north Atlantic, given that

it is springtime, and that the fish is a light salmon.

In practice, we determine the values of several query variables

(denoted collectively X) given the evidence of all other 

variables (denoted e) by

where α is a constant of proportionality.
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In Example 4, suppose we know that a fish is light (c1) and 

caught in the south Atlantic (b2), but we do not know what time 

of year the fish was caught nor its thickness. How shall we 

classify the fish for minimum expected classification error?

Of course we must compute the probability it is a salmon, and 

also the probability it is a sea bass.
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Note that in this case,

that is, if we do not measure information corresponding to 

node D, the conditional probability table at D does not affect 

our results.
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A computation similar shows P(x2|c1, b2) = α 0.042. We 

normalize these probabilities (and hence eliminate α) and find 

P(x1|c1, b2) = 0.73 and P(x2|c1, b2) = 0.27. Thus given this

evidence, we should classify this fish as a salmon.

When the dependency relationships among the features used 

by a classifier are unknown, we generally proceed by taking 

the simplest assumption, namely, that the features are 

conditionally independent given the category, that is,

In practice, this so-called naive Bayes’ rule or idiot Bayes’ 

rule often works quite well in practice, despite its manifest 

simplicity.


