
Chapter 2 (part 3)

Bayesian Decision Theory

• Discriminant Functions for the Normal 
Density

• Minimum Distance Classifier

• Error Probabilities and Integrals

• Signal Detection Theory and Operating 
Characteristics

• Bayes Decision Theory – Discrete Features

• Independent Binary Features

• Missing and Noisy Features
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Discriminant Functions for the Normal Density

• We saw that the minimum error-rate classification can 

be achieved by the discriminant function.

• gi(x) = ln p(x|i) + ln P(i)

• Case of multivariate normal p(x|ωi) ~ N(μi,Σi).

2









  )()(

2

1
exp

)2(

1
)( 1

2/12/
μxΣμx

Σ
x

t

d
p



11 1
( ) ( ) ( ) ln 2 ln ln ( )

2 2 2

t

i i i i i i

d
g Px x μ Σ x μ Σ       

Eq 47



3

Case 1: i = 2.I (I stands for the identity matrix)

The features are statistically independent, and each feature has 

the same variance, σ2.

Geometrically, this corresponds to the situation in which the 

samples fall in equal-size hyperspherical clusters, the cluster for 

the ith class being centered about the mean vector μi. So we have

Where the Euclidean norm is
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If x is equally near two different mean vectors, the optimal

decision will favor the a priori more likely category.

Expansion of the quadratic form (x - μi)
t(x - μi) yields:

The quadratic term xtx is the same for all i, making it an 

ignorable additive constant.



– A classifier that uses linear discriminant functions is 

called “a linear machine”

The decision surfaces for a linear machine are pieces 

of hyperplanes defined by:

gi(x) = gj(x)
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This equation can be written as

where

and
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FIGURE 2.10. If the covariance matrices for

two distributions are equal and proportional to

the identity matrix, then the distributions are

spherical in d dimensions, and the boundary is

a generalized hyperplane of d - 1 dimensions,

perpendicular to the line separating the means.

In these one-, two-, and three-dimensional

examples, we indicate p(x|ωi) and the boundaries

for the case P(ω1) = P(ω2). In the 3-dimensional

case, the grid plane separates R1 from R2.



– The hyperplane through the point x0 and orthogonal to the 

vector w, separating Ri and Rj

always orthogonal to the line linking the means!

• If P(ωi) = P(ωj ) the 2nd term vanishes, and thus the 
point x0 is halfway between the means, and the 
hyperplane is the perpendicular bisector of the line 
between the means (Fig. 2.11). If P(ωi) ≠ P(ωj ), the 
point x0 shifts away from the more likely mean.
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Minimum Distance Classifier

• If the prior probabilities P(ωi) are the same for all c 

classes, then the ln P(ωi) term becomes another 

unimportant additive constant that can be ignored.

• The optimum decision rule can be stated very simply: 

to classify a feature vector x, measure the Euclidean 

distance x - μi from each x to each of the c mean 

vectors, and assign x to the category of the nearest 

mean. Such a classifier is called a minimum distance 

classifier. If each mean vector is thought of as being 

an ideal prototype or template for patterns in its class, 

then this is essentially a template matching procedure 

(Fig. 2.10) 8
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FIGURE 2.11. As the priors are changed, the decision boundary

shifts; for sufficiently disparate priors the boundary will not 

lie between the means of these one-, two- and three-dimensional

spherical Gaussian distributions.



Case 2: i =  (covariance of all classes are 

identical but arbitrary!)

• The samples fall in hyperellipsoidal clusters of equal 

size and shape, the cluster for the ith class being 

centered about the mean vector μi.

• Since both |Σi| and the (d/2) ln 2π term in Eq. 47 are 

independent of i, they can be ignored as superfluous 

additive constants. So the discriminant functions are

• If the prior probabilities P(ωi) are the same for all c 

classes, then the ln P(ωi) term can be ignored.
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Where

The optimal decision rule: To classify a feature vector x, 

measure the squared Mahalanobis distance (x - μi)
tΣ-1(x - μi) 

from x to each of the c mean vectors, and assign x to the 

category of the nearest mean.

Expansion of the quadratic form (x - μi)
tΣ-1(x - μi) and 

dropping xtΣ-1x term (independent of i) the resulting 

discriminant functions are again linear:

Since the discriminants are linear, the resulting decision 

boundaries are again hyperplanes.
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The hyperplane separating Ri and Rj is generally not orthogonal 

to the line between the means, because w = Σ-1(μi-μj) is 

generally not in the direction of μi-μj.

However, it does intersect that line at the point x0 which is 

halfway between the means if the prior probabilities are equal.

If Ri and Rj are contiguous, the boundary (Hyperplane)

between them has the equation

0( ) 0t  w x x
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FIGURE 2.12. Probability densities (indicated by the surfaces 

in two dimensions and ellipsoidal surfaces in three dimensions)

and decision regions for equal but asymmetric Gaussian 

distributions. The decision hyperplanes need not be 

perpendicular to the line connecting the means.
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FIGURE 2.12 The same caption
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Example:

In a two-class, two-dimensional classification task, the feature 

vectors are generated by two normal distributions sharing the same 

covariance matrix

and the mean vectors are μ1 =[0, 0]t , μ2=[3, 3]t , respectively.

(a) Classify the vector [1.0, 2.2]t according to the Bayesian classifier.

It suffices to compute the Mahalanobis distance of [1.0, 2.2]t from 

the two mean vectors. Thus,

Thus, the vector is assigned to the class with mean vector [0, 0]t. 

Notice that the given vector [1.0, 2.2]t is closer to [3, 3]t with 

respect to the Euclidean distance.

(x - μ1)
tΣ-1(x - μ1)

(x - μ2)
tΣ-1(x - μ2)=



Case 3: i = arbitrary

– The covariance matrices are different for each category

(Two category case →Hyperquadrics which are: 
hyperplanes, pairs of hyperplanes, hyperspheres, 
hyperellipsoids, hyperparaboloids, hyperhyperboloids)
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FIGURE 2.13. Non-simply connected decision regions can

arise in one dimensions for Gaussians having unequal variance.
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FIGURE 2.14. Arbitrary Gaussian distributions lead to Bayes

decision boundaries that are general hyperquadrics. Conversely,

given any hyperquadric, one can find two Gaussian distributions

whose Bayes decision boundary is that hyperquadric. These 

Variances are indicated by the contours of constant probability

density.
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FIGURE 2.15. Arbitrary three-dimensional Gaussian distributions

yield Bayes decision boundaries that are two-dimensional 

hyperquadrics. There are even degenerate cases in which the 

decision boundary is a line.
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FIGURE 2.16. The decision regions for four normal 

distributions. Even with such a low number of categories, 

the shapes of the boundary regions can be rather complex.
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Example 1: Decision regions for two-dimensional Gaussian data
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Example 1: Decision regions for two-dimensional Gaussian data
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We assume equal prior probabilities, P(ω1) = P(ω2) = 0.5, 

and substitute these into the general form for a discriminant

and setting g1(x) = g2(x) to obtain the decision boundary:

This equation describes a parabola with vertex at  (3, 1.83).

Note that despite the fact that the variance in the data along

the x2 direction for both distributions is the same, the decision

boundary does not pass through the point (3, 2), midway

between the means, as we might have naively guessed. This

is because for the ω1 distribution, the probability distribution

is “squeezed” in the x1-direction more so than for the ω2

distribution.

x2 = 3.514 - 1.125x1 + 0.1875x1
2



Error Probabilities and Integrals

• Consider first the two-category case, and suppose the 

dichotomizer has divided the space into two regions 

R1 and R2 in a possibly non-optimal way.

• Errors

– an observation x falls in R2 and the true state of nature is ω1  

or

– x falls in R1 and the true state of nature is ω2.

27
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FIGURE 2.17. Components of the probability of error for equal priors and 

(non-optimal) decision point x*. The pink area corresponds to the 

probability of errors for deciding ω1 when the state of nature is in fact ω2; 

the gray area represents the converse, as given in Eq. 70. If the decision 

boundary is instead at the point of equal posterior probabilities, xB, then 

this reducible error is eliminated and the total shaded area is the minimum 

possible; this is the Bayes decision and gives the Bayes error rate.

= ε1P(1)ε2P(2)=



P(correct)?
• In the multicategory case, there are more ways to 

be wrong than to be right, and it is simpler to 

compute the probability of being correct.

29

The Bayes classifier maximizes this probability.



Error Bounds for Normal Densities

• The full calculation of the error for the 

Gaussian case would be quite difficult, 

especially in high dimensions, because of the 

discontinuous nature of the decision regions in 

the above integral.

• In the two-category case the general error 

integral can be approximated analytically to 

give us an upper bound on the error.

30



Chernoff Bound
• To derive a bound for the error, we need the 

following inequality:

min[a, b] ≤ aβb1−β for a, b ≥ 0 and 0 ≤ β ≤ 1.

• Assume a ≥ b. Thus we need only show that          

b ≤ aβb1−β = (a/b)βb. But this inequality is 

manifestly valid, since (a/b)β ≥ 1.

• We had 
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Thus we apply this inequality to get the bound:

This integral is over all feature space.

If the conditional probabilities are normal, this integral can 

be evaluated analytically, yielding:

where
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FIGURE 2.18. The Chernoff error bound is never looser than 

the Bhattacharyya bound. For this example, the Chernoff bound 

happens to be at β*= 0.66, and is slightly tighter than the 

Bhattacharyya bound (β = 0.5).



• k(β) is called Chernoff  distance. The Chernoff 

bound, on P(error) is found by analytically or 

numerically finding the value of β that minimizes 

Pβ(ω1)P
1−β(ω2) e

−k(β) and substituting the results in 

Eq. P(error)=…

Bhattacharyya Bound

• Slightly less tight bound can be derived simply by 

setting the results for β = 1/2. This result is the so-

called Bhattacharyya bound on the error. Thus,

34
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where

The term k(1/2) is called Bhattacharyya distance, and will 

be used as an important measure of the separability of two 

distributions.

The Chernoff and Bhattacharyya bounds may still be used 

even if the underlying distributions are not Gaussian. 

However, for distributions that deviate markedly from a 

Gaussian, the bounds will not be informative.

Example 2: Error bounds for Gaussian distributions.

It is a straightforward matter to calculate the Bhattacharyya 

bound for the two dimensional data sets of Example 1.
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Example 1: Decision regions for two-dimensional Gaussian data

P(ω1) = P(ω2) = 0.5



Calculating ….

• K(1/2)=0.41157,

• P(error) ≤ 0.008191

• A slightly tighter bound on the error can be 

approximated by searching numerically for the 

Chernoff bound, which for this problem gives 

0.008190.

• Numerically integrating of the error rate gives an 

error rate of 0.0021, and thus the bounds here are 

not particularly tight. Such numerical integration 

is often impractical for Gaussians in higher than 

two or three dimensions.

37
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Signal Detection Theory and Operating 

Characteristics

• Another measure of distance between two Gaussian 
distributions has found great use in experimental 
psychology, radar detection and other fields.

• Suppose we are interested in detecting a single weak 
pulse, such as a dim flash of light or a weak radar 
reflection.

• Detector detects a signal whose mean value is μ1 when 
signal is absent and μ2 when signal is present.

• The detector (classifier) employs a threshold value x*.

• How do we compare two decision rules if they require 
different thresholds for optimum performance?

39



• Suppose we do not know μ1, μ2, σ nor x* .

• We seek to find some measure of the ease of 

discriminating whether the pulse is present or 

not, in a form independent of the choice of x*. 

• Such a measure is the discriminability, which 

describes the inherent and unchangeable 

properties due to noise and the strength of the 

external signal, but not on the decision 

strategy (i.e., the actual choice of x*).

40
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Discriminability

A high d' is of course desirable.

While we do not know μ1, μ2, σ nor x*, we assume

here that we know the state of nature and the decision

of the system. Such information allows us to find d'.

To this end, we consider the following four 

probabilities:



• P(x > x* |x      ω2): a hit — the probability that the internal 

signal is above x* given that the external signal is present. 

True Positive (TP)

• P(x > x* |x      ω1): a false alarm — the probability that the 

internal signal is above x* despite there being no external 

signal is present. False Positive (FP) – type I error.

• P(x < x* |x      ω2): a miss — the probability that the 

internal signal is below x* given that the external signal is 

present. False Negative (FN)- type II error.

• P(x < x* |x     ω1): a correct rejection — the probability that 

the internal signal is below x* given that the external signal 

is not present. True Negative (TN).

42
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Terminology and derivations from a 

confusion matrix
• True Positive Rate (TPR) 

eqv. with hit rate, recall, 

sensitivity TPR = TP / P = 

TP / (TP + FN) 

• False Positive Rate (FPR) 

eqv. with false alarm rate, 

fall-out FPR = FP / N =    

FP / (FP + TN) 

• Accuracy (ACC)    ACC = 

(TP + TN) / (P + N) 

• Specificity (SPC)    SPC =  

TN / (FP + TN) = 1 − FPR

• Positive Predictive Value

(PPV) eqv. with precision

PPV = TP / (TP + FP)

• Negative Predictive Value

(NPV) NPV = TN / (TN + 

FN) 

• False Discovery Rate (FDR) 

FDR = FP / (FP + TP) 

Matthews Correlation 

Coefficient (MCC)
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http://en.wikipedia.org/wiki/Hit_rate
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Correct reject

miss
False alarm

hit
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Receiver Operating Characteristic 

(ROC)

• If we have a large number of trials (and we can 
assume x* is fixed, albeit at an unknown value), we 
can determine these probabilities experimentally, in 
particular the hit and false alarm rates.

• If the densities are fixed but the threshold x* is 
changed, then our hit and false alarm rates will also 
change.

• Thus we see that for a given discriminability d', our 
point will move along a smooth curve — a receiver 
operating characteristic or ROC curve.

46
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FIGURE 2.20. In a receiver operating characteristic (ROC) curve, the abscissa is the

probability of false alarm, P(x > x* |x     ω1), and the ordinate is the probability of hit,

P(x > x* |x      ω2). From the measured hit and false alarm rates (here corresponding to

x* in Fig. 2.19 and shown as the red dot), we can deduce that d' = 3.






Bayes Decision Theory – Discrete 

Features

• Suppose components of x are binary or integer 

valued. So, x can take only one of m discrete values 

v1, v2, …, vm

The probability density function p(x|ωj) becomes 

singular; So:
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Bayes’ formula:



• The definition of the conditional risk R(α|x) is
unchanged, and the fundamental Bayes
decision rule remains the same: To minimize
the overall risk:

• The basic rule to minimize the error-rate by
maximizing the posterior probability is also
unchanged as are the discriminant functions of
Eqs. 25 – 27, given the obvious replacement of
densities p(·) by probabilities P(·).
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Independent Binary Features

• Case of independent binary features in 2 category 

problem

Let x = (x1, x2, …, xd)
t where each xi is either 0 or 1, 

with probabilities:

pi = Prob(xi=1|1)

qi = Prob(xi=1|2)

• By assuming conditional independence:

50the Bernoulli distribution
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Then the likelihood ratio is given by

We had 



• The discriminant function in this case is:
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Example 3: Bayesian decisions for three-

dimensional binary features

• Suppose two categories consist of independent

binary features in three dimensions with

known feature probabilities. Let us construct

the Bayesian decision boundary if P(ω1) =

P(ω2) = 0.5 and the individual components

obey:
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The decision boundary for the Example involving three-dimensional binary features.

On the left we show the case pi = 0.8 and qi =0.5. On the right we use the same values

except p3 = q3, which leads to w3 = 0 and a decision surface parallel to the x3 axis.



• The surface g(x) = 0, is shown on the left of 
the figure, the boundary places points with two 
or more “yes” answers into category ω1, since 
that category has a higher probability of having 
any feature have value 1.

• If we have:

• In this case feature x3 gives us no predictive 
information about the categories, and hence the 
decision boundary is parallel to the x3 axis.
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Missing and Noisy Features

• Suppose we develop a Bayes classifier using 
uncorrupted data, but our input (test) data are then 
corrupted in particular known ways. How can we 
classify such corrupted inputs to obtain a minimum 
error now?

• Missing Features

• Let x = [xg, xb], where xg represents the known or 
“good” features and xb represents the “bad” ones, i.e., 
either unknown or missing.

• We seek the Bayes rule given the good features, and 
for that the posterior probabilities are needed.
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Figure 2.22: Four categories have equal priors and the class-

conditional distributions shown. If a test point is presented in 

which one feature is missing (here, x1) and the other is measured 

to have value      (red dashed line), we want our classifier to 

classify the pattern as category ω2, because  p(      |ω2) is the 

largest of the four likelihoods.

2x̂

2x̂
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the posteriors are

is one form of our discriminant function.

where

We refer to as a marginal distribution; 

we say the full joint distribution is marginalized over the 

variable xb.
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Finally we use the Bayes decision rule on the resulting posterior 

probabilities, i.e., choose ωi if P(ωi|xg) > P(ωj |xg) for all i and j.

Noisy Features

A particular feature has been corrupted by statistically 

independent noise.

We assume we have uncorrupted (good) features xg, as before, 

and a noise model, expressed as p(xb|xt). Here we let xt denote 

the true value of the observed xb features, i.e., without the noise 

present; that is, the xb are observed instead of the true xt. We

assume that if xt were known, xb would be independent of ωi and 

xg. From such an assumption we get:
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p(xg, xb, xt) = p(xb|xg, xt)p(xg, xt), 

and p(xb|xg, xt) = p(xb|xt)

We have

By our independence assumption, if we know xt, then xb does not 

provide any additional information about ωi.

We use this as discriminant functions for classification in the 

manner dictated by Bayes.



* Compound Bayesian Decision Theory and 

Context
• In the fish problem our original assumption was that

the sequence of types of fish was so unpredictable that

the state of nature looked like a random variable. Now

we consider the possibility that the consecutive states

of nature might not be statistically independent. 

performance improvement.

• The way in which we exploit such context information

is somewhat different when we can wait for n fish to

emerge and then make all n decisions jointly than

when we must decide as each fish emerges. The first

problem is a compound decision problem, and the

second is a sequential compound decision problem.
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• let ω = (ω(1), ..., ω(n))t be a vector denoting the n

states of nature, with ω(i) taking on one of the c

values ω1, ..., ωc.

• Let P(ω) be the prior probability for the n states of

nature.

• Let X = (x1, ..., xn) be a matrix giving the n

observed feature vectors, with xi being the feature

vector obtained when the state of nature was ω(i).

• Finally, let p(X|ω) be the conditional probability

density function for X given the true set of states of

nature ω. The posterior prob. of ω is given by
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• One can define a loss matrix for the compound 

decision problem and seek a decision rule that 

minimizes the compound risk.

• In practice the computation of P(ω|X) can easily 

prove to be an enormous task. There are cn

possible values of ω to consider.

• If the distribution of the feature vector xi depends 

only on the corresponding state of nature ω(i), not 

on the values of the other feature vectors or the 

other states of nature. Then the joint density 

p(X|ω) is merely the product of the component 

densities p(xi |ω(i)):
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Homework#1

• Textbook: Chapter 2

• 2.1, 2.2, 2.3, 2.4

• 2.5, 2.6, 2.23

• 2.13, 2.14, 2.24, 2.31

64

Computer Assignment #1

Computer Exercise 2.1, 2.2


