
Chapter 2: 

Bayesian Decision Theory (Part 2)

 Minimum-Error-Rate Classification

 Classifiers, Discriminant Functions and Decision Surfaces

 The Normal Density

 Entropy and Information

All materials used in this course were taken from the textbook “Pattern Classification” by Duda et al., John Wiley & Sons, 2001 

with the permission of the authors and the publisher
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Minimum-Error-Rate Classification

 Actions are decisions on classes

If action i is taken and the true state of nature is j then:

the decision is correct if i = j and is error if i  j

 Seek a decision rule that minimizes the probability 
of error which is the error rate
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 Introduction of the symmetrical or zero-one loss function:

Therefore, the conditional risk is: 

“The risk corresponding to this loss function is the average 
probability error”
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 Minimize the risk requires maximize P(i | x)

(since R(i | x) = 1 – P(i | x))

 For Minimum error rate

 Decide i if P (i | x) > P(j | x) j  i
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 Regions of decision and zero-one loss function:

 If  is the zero-one loss function which means:
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Figure 2.3: The likelihood ratio p(x|ω1)/p(x|ω2) for the distributions shown in Fig. 2.1. 

If  we employ a zero-one or classification loss, our decision boundaries are determined 

by the threshold θa. If  our loss function penalizes miscategorizing ω2 as ω1 patterns 

more than the converse, (i.e., λ12 > λ21), we get the larger threshold θb, and hence R1

becomes smaller.
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Minimax Criterion

 We may want to design our classifier to perform 
well over a range of prior probabilities.

 A reasonable approach is then to design our 
classifier so that the worst overall risk for any 
value of the priors is as small as possible — that 
is, minimize the maximum possible overall risk.

 Let R1 denote that (as yet unknown) region in 
feature space where the classifier decides ω1 and 
likewise for R2 and ω2
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The overall risk in terms of conditional risks is (see Eqs 12,13):

We use
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So we have:

Note that the overall risk is linear in P(ω1). If we can find a

boundary such that the constant of proportionality is 0, then the

risk is independent of priors. This is the minimax solution, and

the minimax risk, Rmm, can be read from Eq. 22:

+



10

The value of the minimax risk, Rmm, is hence equal to 

the worst Bayes risk.
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Figure 2.4: The curve at the bottom shows the minimum (Bayes) error as a function of

prior probability P(ω1) in a two-category classification problem of fixed distributions.

For each value of the priors (e.g., P(ω1) = 0.25) there is a corresponding optimal

decision boundary and associated Bayes error rate. For any (fixed) such boundary, if

the priors are then changed, the probability of error will change as a linear function of

P(ω1) (shown by the dashed line). The maximum such error will occur at an extreme

value of the prior, here at P(ω1) = 1. To minimize the maximum of such error, we

should design our decision boundary for the maximum Bayes error (here P(ω1) = 0.6),

and thus the error will not change as a function of prior, as shown by the solid red

horizontal line.

fixed decision boundary, varying priors

find max Bayes error!!

Bayes error curve 

(assume zero-one loss

function in this example)



Neyman-Pearson Criterion

 An alternative to the Bayes decision rules for a 
two-class problem is the Neyman–Pearson test.

 We may classify a pattern of class ω1 as belonging 
to class ω2 or a pattern from class ω2 as belonging 
to class ω1.

 Let the probability of these two errors be ε1 and ε2

respectively, so that

and
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 The Neyman–Pearson decision rule is to minimise 
the error ε1 subject to ε2 being equal to a 
constant, ε0, say.

 If class ω1 is termed the positive class and class 
ω2 the negative class, then ε1 is referred to as the 
false negative rate, the proportion of positive 
samples incorrectly assigned to the negative class; 
ε2 is the false positive rate, the proportion of 
negative samples classifed as positive.
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We seek the minimum of

where µ is a Lagrange multiplier and ε0 is the specified false 

alarm rate. Then we have:

This will be minimized if we choose Ω1 such that the 

integrand is negative, i.e.

or
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Thus the decision rule depends only on the within-class 

distributions and ignores the a priori probabilities.

The threshold  µ is chosen so that

the specified false alarm rate. However, in general µ cannot 

be determined analytically and requires numerical calculation.

Statistical Pattern Recognition, Third Edition. Andrew R. Webb • Keith D. Copsey

Often, the performance of the decision rule is summarized in a 

receiver operating characteristic (ROC) curve, which plots the 

true positive against the false positive  i.e.1-ε1 vs ε2  as the 

threshold μ is varied..



16

FP  (false alarm)

ROC curve for the univariate case of two normally distributed 

classes of unit variance and means separated by a distance, d. 

TP  (detection)
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Classifiers, Discriminant Functions
and Decision Surfaces

 The multi-category case

 Set of discriminant functions gi(x), i = 1,…, c

 The classifier assigns a feature vector x to class i

if: gi(x) > gj(x) j  i
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FIGURE 2.5. The functional structure of a general statistical pattern 

classifier which includes d inputs and c discriminant functions gi(x). A 

subsequent step determines which of the discriminant values is the 

maximum, and categorizes the input pattern accordingly. The arrows 

show the direction of the flow of information, though frequently the 

arrows are omitted when the direction of flow is self-evident.



19

 Let gi(x) = - R(i | x)

(max. discriminant corresponds to min. risk!)

 For the minimum error rate, we take 

gi(x) = P(i | x)

(max. discrimination corresponds to max. posterior!)

 We may replace every gi(x) by f(gi(x)), where f(·) is a 

monotonically increasing function, the resulting 

classification is unchanged.



20

Some of the above choices can be much simpler to 

understand or to compute than others.

 Feature space divided into c decision regions

if gi(x) > gj(x) j  i then x is in Ri

(Ri means assign x to i) (It does not depend on the form 
of discriminant functions)

•

•

•
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Figure 2.6: In this two-dimensional two-category classifier, the 

probability densities are Gaussian (with 1/e ellipses shown), the 

decision boundary consists of two hyperbolas, and thus the decision 

region R2 is not simply connected.
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 The two-category case

 A classifier is a “dichotomizer” that has two discriminant 
functions g1 and g2

Let g(x)  g1(x) – g2(x)

Decide 1 if g(x) > 0; Otherwise decide 2

 Of the various forms in which the minimum-error-
rate discriminant function can be written, the 
following two are particularly convenient:
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The Normal Density

The structure of a Bayes classifier is determined by the conditional

densities p(x|ωi) as well as by the prior probabilities.

The multivariate normal or Gaussian density has received more 

attention than the others, because it is analytically tractable.

The definition of the expected value of a scalar function f(x), 

defined for some density p(x):

If we have samples in a set D from a discrete distribution:

where P(x) is the probability mass at x.
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The Normal Density

 Univariate density

 Density which is analytically tractable

 Continuous density

 A lot of processes are asymptotically Gaussian

 Handwritten characters, speech sounds are ideal or prototype 
corrupted by random process (central limit theorem)

Where: 

 = mean (or expected value) of x

2 = expected squared deviation or variance
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The univariate normal density is completely specified by two

parameters: its mean μ and variance σ2.
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FIGURE 2.7. A univariate normal distribution has roughly 95% 

of its area in the range |x − μ| ≤ 2σ, as shown. The peak of the 

distribution has value ( ) 1 2  p   
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Entropy and information

 Assume we have a discrete set of symbols {v1 v2 . . . vm} with 

associated probabilities Pi. The entropy of the discrete 

distribution — a measure of the randomness or unpredictability 

of a sequence of symbols drawn from it — is

where since we use the logarithm base 2 entropy is measured in 

bits.

 For a given number of symbols m, the uniform distribution in 

which each symbol is equally likely, is the maximum entropy 

distribution (and H = log2m bits) — we have the maximum 

uncertainty about the identity of each symbol that will be chosen.
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There is a deep relationship between the normal 

distribution and entropy and is given by.

and measured in nats. 

If a log2 is used instead, the unit is the bit.

Entropy:
The entropy is a non negative quantity that describes the 

fundamental uncertainty in the values of points selected 

randomly from a distribution.
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 It can be shown that the normal distribution has 
the maximum entropy of all distributions having a 
given mean and variance.

 As stated by the Central Limit Theorem, the 
aggregate effect of a large number of small, 
independent random disturbances will lead to a 
Gaussian distribution.



The Kullback-Leibler Divergence or 
the relative entropy

30

Consider some unknown distribution p(x), and

suppose that we have modelled this using an

approximating distribution q(x). If we use q(x) to

construct a coding scheme for the purpose of

transmitting values of x to a receiver, then the

average additional amount of information (in nats)

required to specify the value of x (assuming we

choose an efficient coding scheme) as a result of

using q(x) instead of the true distribution p(x) is

given by:
From: Theodoridis & Koutroumbas
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The KL distance is closely related to the mutual

information measure, I, between l scalar random

variables, xi , i=1, 2, ... , l. Indeed, let us compute the

KL distance between the joint pdf p(x) and the pdf

resulting from the product of the corresponding

marginal† probability densities, that is,

From: Theodoridis & Koutroumbas†  In the study of several random variables, the statistics of each are called marginal.



32

Carrying out the integrations on the right-hand side it is 

straightforward to see the KL distance is equal to the 

mutual information, I , defined as:

( )KL p q 



33

where H(xi) is the associated entropy of xi , defined as

It is now easy to see that if the variables xi , i=1, 2, ..., l, 

are statistically independent their mutual information I 

is zero. Indeed, in this case                                      

hence L= I (x1, x2, ..., xl ) = 0.
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 Multivariate density

 Multivariate normal density in d dimensions is:

where:

x = (x1, x2, …, xd)
t      (t stands for the transpose vector form)

 = (1, 2, …, d)
t mean vector

 = d×d covariance matrix

|| and -1 are determinant and inverse respectively
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The inner (dot) product

Abbreviation p(x) ~ N(μ,Σ).
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 The covariance matrix Σ is always symmetric and 

positive semidefinite.

 (A matrix A is pos. semidefinite if:                 for any z.)

 In the case in which Σ is positive definite, the 

determinant of Σ is strictly positive.

 The diagonal elements σii  are the variances of the 

respective xi (i.e., σ2
i ), and the off-diagonal elements 

σij are the covariances of xi and xj .

 If xi and xj are statistically independent, σij = 0.

0t z Az



37

 Linear combinations of jointly normally distributed 

random variables, independent or not, are normally 

distributed.

 If A is a d-by-k matrix and y = Atx is a k-component 

vector, then p(y) ~ N(Atμ, At Σ A)

 In the special case where k = 1 and A is a unit-length 

vector a, y = atx is a scalar that represents the 

projection of x onto a line in the direction of a; in that 

case at Σ a is the variance of the projection of x onto a.



…. Diagonalization (refer to Ch06-LinearTransformations.ppt)

Perform a change of basis (similarity transformation) using

the eigenvectors as the basis vectors. If the eigenvalues are

distinct, the new matrix will be diagonal.

B z1 z2  zn=
z1 z2    zn{ , } Eigenvectors

1  2    n{ , } Eigenvalues

n



B
1–
AB[ ]

1 0  0

0 2  0

0 0 

=

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[ ]1

t

t

t -1 t

...      matrix consisting of  eigenvectors

     use  as the transformation matrix 

   covariance matrix of transformed vector

note: ( )    and   

n

t

d d d 



   

 

y x

Φ φ φ

y Φ x Φ A

Φ Φ Λ

Φ Φ Φ Φ

1/2 t 1/2 t

1/2

1/2 t 1/2 1/2 1/2

 ( )    

     use  as the transformation matrix 

  

 covariance matrix of transformed vector is identity matrix

 



   

 

    y x

y Λ Φ x ΦΛ x

ΦΛ A

Λ Φ ΦΛ Λ ΛΛ I

Whitening Transformation
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 If we define Φ to be the matrix whose columns are the 

orthonormal eigenvectors of Σ, and Λ the diagonal 

matrix of the corresponding eigenvalues, then the 

transformation Aw = ΦΛ-1/2 applied to the coordinates 

insures that the transformed distribution has covariance 

matrix equal to the identity matrix. 

 In signal processing, the transform Aw is called a 

whitening transformation, since it makes the spectrum 

of eigenvectors of the transformed distribution uniform.

Properties
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 The multivariate normal density is completely 

specified by d + d(d + 1)/2 parameters — the 

elements of the mean vector μ and the independent 

elements of the covariance matrix Σ.

 Samples drawn from a normal population tend to fall 

in a single cloud or cluster (Fig. 2.9); the center of 

the cluster is determined by the mean vector, and the 

shape of the cluster is determined by the covariance 

matrix.



 Whitening  transformations are not orthonormal 
transformations because 

Therefore,  Euclidean distances  are not preserved:

 After  a whitening  transformation,  the  
covariance matrix  is  invariant  under any 
orthonormal  transformation, because

42

 1/2 1/2 1/2 t 1/2 1/2 1/2 1
t

         ΦΛ ΦΛ Λ ΦΦΛ Λ Λ Λ I

 
2 21 1t t t t     xy y y x ΦΛ Φ x x x x

t t Ψ IΨ Ψ Ψ I
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FIGURE 2.8. The action of a linear transformation on the feature space will convert an

arbitrary normal distribution into another normal distribution. One transformation, A, takes

the source distribution into distribution N(Atμ, At Σ A). Another linear transformation—

a projection P onto a line defined by vector a—leads to N(μ, σ2) measured along that line. 

While the transforms yield distributions in a different space, we show them superimposed 

on the original x1- x2 space. A whitening transform, Aw , leads to a circularly symmetric

Gaussian, here shown displaced.
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FIGURE 2.9. Samples drawn from a two-dimensional Gaussian

lie in a cloud centered on the mean. The ellipses show lines of 

equal probability density of the Gaussian.
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x1

x2

x1

x2

Whitening process
Eigenvalues and 

eigenvectors of  a 

distribution.
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Mahalanobis distance from x to μ

Thus, the contours of constant density are hyperellipsoids of constant

Mahalanobis distance to μ and the volume of these hyperellipsoids 

measures the scatter of the samples about the mean.

It follows from Multivariate normal density function that 

the loci of points of constant density are hyperellipsoids for

which the quadratic form (x-μ)tΣ-1(x-μ) is constant. The 

principal axes of these hyperellipsoids are given by the 

eigenvectors of Σ (described by Φ); the eigenvalues 

(described by Λ) determine the lengths of these axes.

2 1( ) ( )tr   x μ Σ x μ
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 The volume of the hyperellipsoid corresponding to a 

Mahalanobis distance r is given by

where Vd is the volume of a d-dimensional unit 

hypersphere:
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(a) The graph of a two-dimensional Gaussian pdf and 

(b) the corresponding isovalue curves for a diagonal Σ with       

The graph has a spherical symmetry showing no preference in 

any direction.
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(a) The graph of a two-dimensional Gaussian pdf and 

(b) the corresponding isovalue curves for a diagonal Σ with    

The graph is elongated along the x1 direction.
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(a) The graph of a two-dimensional Gaussian pdf and 

(b) the corresponding isovalue curves for a diagonal Σ with      

The graph is elongated along the x2 direction.
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(a) The graph of a two-dimensional Gaussian pdf and 

(b) the corresponding isovalue curves for a case of a nondiagonal 

Σ. Playing with the values of the elements of Σ one can 

achieve different shapes and orientations



Sample generation

 To generate samples which are to be normally distributed 

according  to a given expected vector μ and covariance 

matrix Σ.

 From the given Σ,  find the whitening transformation of

In  the transformed  space, Σy=I. 

 Generate  N independent, normally distributed  numbers  

for  each yi (i=l, .  .  .  ,  n)  with zero expected value and 

unit variance. Then, form N vectors y1, y2, . . .  ,yN. 

 Transform  back  the generated samples  to  the x-space  by 

 Add μ to the samples  in the x-space as xk+ μ (k=1,  ..., N).
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