Chapter 2:

Bayesian Decision Theory (Part 1)

Introduction:

• Bayesian decision theory is a fundamental statistical approach to the problem of pattern classification. This approach is based on quantifying the tradeoffs between various classification decisions using probability and the costs that accompany such decisions.

The sea bass/salmon example

- State of nature, prior
 - State of nature is a random variable
 - The catch of salmon and sea bass is equiprobable

```
\omega = \omega_1 for see bass and \omega = \omega_2 for salmon
```

 $P(\omega_1)$ a priori probability that the next fish is sea bass

$$P(\omega_1) = P(\omega_2)$$
 (uniform priors)

$$P(\omega_1) + P(\omega_2) = 1$$
 (exclusivity and exhaustivity)

Decision rule with only the prior information

- Decide ω_1 if $P(\omega_1) > P(\omega_2)$ otherwise decide ω_2
- In most circumstances we are not asked to make decisions with so little information.
 - We might for instance use a lightness measurement x to improve our classifier.

• Use of the class – conditional information

- The probability density function $p(x|\omega_1)$ should be written as $p_X(x|\omega_1)$ to indicate that we are speaking about a particular density function for the random variable X.
- $p(x|\omega_1)$ and $p(x|\omega_2)$ describe the difference in lightness between populations of sea and salmon

We generally use an upper-case $P(\cdot)$ to denote a *probability mass* function and a lower-case $p(\cdot)$ to denote a *probability density function*.

Figure 2.1: Hypothetical class-conditional probability density functions show the probability density of measuring a particular feature value x given the pattern is in category ω_i . If x represents the length of a fish, the two curves might describe the difference in length of populations of two types of fish. Density functions are normalized, and thus the area under each curve is 1.0.

- · Posterior, likelihood, evidence
- Suppose that we know both the prior probabilities $P(\omega_j)$ and the conditional densities $p(x|\omega_j)$. Suppose further that we measure the lightness of a fish and discover that its value is x. How does this measurement influence our attitude concerning the true state of nature that is, the category of the fish?
- The (joint) probability density of finding a pattern that is in category ω_j and has feature value x can be written two ways:
- $p(\omega_j, x) = P(\omega_j | x)p(x) = p(x | \omega_j)P(\omega_j)$ Bayes' formula

$$P(\omega_j|x) = \frac{p(x|\omega_j)P(\omega_j)}{p(x)},$$

$$posterior = \frac{likelihood \times prior}{evidence}$$

Where in case of two categories

$$p(x) = \sum_{j=1}^{2} p(x|\omega_j) P(\omega_j).$$

Notice that in Bayes' formula the product of the likelihood and the prior probability that is most important in determining the posterior probability; the evidence factor, p(x), can be viewed as merely a scale factor that guarantees that the posterior probabilities sum to one

If we have an observation x for which $P(\omega_1|x)$ is greater than $P(\omega_2|x)$, we would naturally be inclined to decide that the true state of nature is ω_1 .

Figure 2.2: Posterior probabilities for the particular priors $P(\omega_1) = 2/3$ and $P(\omega_2) = 1/3$ for the class-conditional probability densities shown in Fig. 2.1. Thus in this case, given that a pattern is measured to have feature value x = 14, the probability it is in category ω_2 is roughly 0.08, and that it is in ω_1 is 0.92. At every x, the posteriors sum to 1.0

Decision given the posterior probabilities

x is an observation for which:

if
$$P(\omega_1 \mid x) > P(\omega_2 \mid x)$$
 True state of nature = ω_1
if $P(\omega_1 \mid x) < P(\omega_2 \mid x)$ True state of nature = ω_2

Therefore:

whenever we observe a particular x, the probability of error is:

$$P(error \mid x) = P(\omega_1 \mid x)$$
 if we decide ω_2

$$P(error \mid x) = P(\omega_2 \mid x)$$
 if we decide ω_1

Minimizing the probability of error

Decide ω_1 if $P(\omega_1 \mid x) > P(\omega_2 \mid x)$; otherwise decide ω_2

$$P(error) = \int_{-\infty}^{\infty} p(error, x) dx = \int_{-\infty}^{\infty} P(error \mid x) p(x) dx$$

If for every x we insure that P(error|x) is as small as possible, then the integral must be as small as possible.

Therefore:

$$P(error|x) = min [P(\omega_1|x), P(\omega_2|x)]$$

(Bayes decision)

Example of the two regions R_1 and R_2 formed by the Bayesian classifier for the case of two equiprobable classes.

$$P_{e} = \frac{1}{2} \int_{-\infty}^{x_{0}} p(x|\omega_{2}) dx + \frac{1}{2} \int_{x_{0}}^{+\infty} p(x|\omega_{1}) dx$$
 10

- By eliminating this scale factor, p(x), we obtain the following completely equivalent decision rule:
- Decide ω_1 if $p(x|\omega_1)P(\omega_1) > p(x|\omega_2)P(\omega_2)$; otherwise decide ω_2 .

• Note using evidence p(x) insure us that $P(\omega_1|x) + P(\omega_2|x) = 1$.

Bayesian Decision Theory – Continuous Features

Generalization of the preceding ideas

- Use of more than one feature
- Use more than two states of nature
- Allowing actions and not only decide on the state of nature
- Introduce a loss function which is more general than the probability of error

- The use of more than one feature \rightarrow the *feature* vector \mathbf{x} , where \mathbf{x} is in a *d*-dimensional Euclidean space \mathbf{R}^d , called the *feature space*.
- Allowing more feature than two states of nature provides us with a useful generalization for a small notational space expense.
- Allowing actions other than classification primarily allows the possibility of rejection, i.e., of refusing to make a decision in close cases; this is a useful option if being indecisive is not too costly.

$$R = \left\{ x | 1 - \max_{i} p(\omega_{i}|x) > t \right\}$$

R, a reject region

$$A = \left\{ \mathbf{x} | 1 - \max_{i} p(\omega_{i} | \mathbf{x}) \le t \right\}$$

A, an acceptance or classification region

where *t* is a threshold.

14

Formally, the *loss function* states exactly how costly loss each action is, and is used to convert a probability determination into a decision.

Let $\{\omega_1, \omega_2, ..., \omega_c\}$ be the set of c states of nature ("categories")

Let $\{\alpha_1, \alpha_2, ..., \alpha_a\}$ be the set of possible actions

Let $\lambda(\alpha_i|\omega_j)$ be the loss incurred for taking action α_i when the state of nature is ω_j

Bayes' formula:

$$P(\omega_j|\mathbf{x}) = \frac{p(\mathbf{x}|\omega_j)P(\omega_j)}{p(\mathbf{x})},$$

where the evidence is now

$$p(\mathbf{x}) = \sum_{j=1}^{c} p(\mathbf{x}|\omega_j) P(\omega_j).$$

the expected loss associated with taking action α_i is merely

$$R(\alpha_i \mid \mathbf{x}) = \sum_{j=1}^{c} \lambda(\alpha_i \mid \omega_j) P(\omega_j \mid \mathbf{x})$$

An expected loss is called a *risk*, and $R(\alpha_i|\mathbf{x})$ is called the *conditional risk*.

We shall show that this *Bayes decision procedure* actually provides the optimal performance on an overall risk.

A general *decision rule* is a function $\alpha(\mathbf{x})$ that tells us which rule action to take for every possible observation. For every \mathbf{x} the *decision function* $\alpha(\mathbf{x})$ assumes one of the a values α_1 , ..., α_a .

The overall risk is given by
$$R = \int R(\alpha(\mathbf{x})|\mathbf{x})p(\mathbf{x}) \ d\mathbf{x}$$
,

Overall risk

$$R = \text{Sum of all } R(\alpha_i \mid \mathbf{x}) \text{ for } i = 1,...,a$$

Conditional risk

Minimizing $R \longleftrightarrow Minimizing R(\alpha_i|\mathbf{x})$ for i = 1,..., a

$$R(\alpha_i \mid \mathbf{x}) = \sum_{j=1}^{j=c} \lambda(\alpha_i \mid \omega_j) P(\omega_j \mid \mathbf{x})$$

$$for i = 1, ..., a$$

Selecting the action α_i for which $R(\alpha_i|\mathbf{x})$ is minimum. The resulting minimum overall risk is called the *Bayes risk*, denoted R^* , and is the best performance that can be achieved.

Two-category classification

 α_l : deciding ω_l

 α_2 : deciding ω_2

 $\lambda_{ij} = \lambda(\alpha_i | \omega_j)$ be loss incurred for deciding ω_i when the true state of nature is ω_i

Conditional risk:

$$R(\alpha_1 \mid x) = \lambda_{11} P(\omega_1 \mid x) + \lambda_{12} P(\omega_2 \mid x)$$

$$R(\alpha_2 \mid x) = \lambda_{21} P(\omega_1 \mid x) + \lambda_{22} P(\omega_2 \mid x)$$

Our rule is the following:

if
$$R(\alpha_1 \mid x) < R(\alpha_2 \mid x)$$

action α_l : "decide ω_l " is taken

This results in the equivalent rule:

decide
$$\omega_I$$
 if: $(\lambda_{2I} - \lambda_{II}) P(\omega_I | \mathbf{x}) > (\lambda_{I2} - \lambda_{22}) P(\omega_2 | \mathbf{x})$
Or

$$(\lambda_{21} - \lambda_{11}) p(\mathbf{x} | \omega_1) P(\omega_1) > (\lambda_{12} - \lambda_{22}) p(\mathbf{x} | \omega_2) P(\omega_2)$$
and decide ω_2 otherwise

Likelihood ratio:

The preceding rule is equivalent to the following rule: if

$$\frac{p\left(\mathbf{x} \mid \omega_{1}\right)}{p\left(\mathbf{x} \mid \omega_{2}\right)} > \frac{\lambda_{12} - \lambda_{22}}{\lambda_{21} - \lambda_{11}} \frac{P\left(\omega_{2}\right)}{P\left(\omega_{1}\right)}$$

Then take action α_I (decide ω_I)

Otherwise take action α_2 (decide ω_2)

• We can consider $p(\mathbf{x}|\omega_j)$ a function of ω_j (i.e., the likelihood function), and then form the *likelihood ratio* $p(\mathbf{x}|\omega_1)/p(\mathbf{x}|\omega_2)$.

Optimal decision property: "If the likelihood ratio exceeds a threshold value independent of the input pattern **x**, we can take optimal actions"

Exercise

Select the optimal decision where:

$$\Omega = \{\omega_1, \omega_2\}$$

$$p(x|\omega_1) \longrightarrow N(2, 0.5) \text{ (Normal distribution)}$$

$$p(x|\omega_2) \longrightarrow N(1.5, 0.2)$$

$$P(\omega_1) = 2/3$$

$$P(\omega_2) = 1/3$$

$$\lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$