Chapter 2:
Bayesian Decision Theory (Part 1)

Introduction:

» Bayesian decision theory is a fundamental
statistical approach to the problem of pattern
classification. This approach 1s based on
quantifying the tradeoffs between various
classification decisions using probability and
the costs that accompany such decisions.



* The sea bass/salmon example

— State of nature, prior

 State of nature 1s a random variable

* The catch of salmon and sea bass 1s equiprobable
o= , for see bass and ® = w, for salmon
P(w,) a priori probability that the next fish is sea bass
P(w,) = P(®,) (uniform priors)

P(w,) + P(®w,) = 1 (exclusivity and exhaustivity)



Decision rule with only the prior information

— Decide o, if P(®,) > P(®,) otherwise decide o,
In most circumstances we are not asked to make decisions with
so little information.

— We might for instance use a lightness measurement x to improve our
classifier.

Use of the class — conditional information

The probability density function p(x|®,) should be written as
px|w,) to Indicate that we are speaking about a particular
density function for the random variable X.

p(x|w,) and p(x|w,) describe the difference in lightness between
populatlons of sea and salmon

We generally use an upper-case P( *) to denote a probability mass
function and a lower-case p( °) to denote a probability density function.
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Figure 2.1: Hypothetical class-conditional probability density
functions show the probability density of measuring a particular
feature value x given the pattern is in category w, If x represents
the length of a fish, the two curves might describe the difference
in length of populations of two types of fish. Density functions are

normalized, and thus the area under each curve 1s 1.0. 4



Posterior, likelihood, evidence

Suppose that we know both the prior probabilities
P(w;) and the conditional densities p(x|®;). Suppose
further that we measure the lightness of a fish and
discover that its value 1s x. How does this
measurement influence our attitude concerning the

true state of nature — that 1s, the category of the
fish?

The (Joint) probability density of finding a pattern
that 1s 1n category @; and has feature value x can be
written two ways:

p(@,x) = P(o]x)p(x) = p(x| o) P(w))

Bayes’ formula

Pl o) = 2L D) likelihood x prior

() ; posterior = _
P\ evidence




Where 1n case of two categories

2

p(x) = pajw;)P(w;).

j=1

Notice that in Bayes’ formula the product of the likelithood and the
prior probability that 1s most important in determining the
posterior probability; the evidence factor, p(x), can be viewed as
merely a scale factor that guarantees that the posterior probabilities
sum to one

I[f we have an observation x for which P(®,|x) is greater than

P(w,|x), we would naturally be inclined to decide that the true
state of nature 1s w;,.
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Figure 2.2: Posterior probabilities for the particular priors
P(w,) = 2/3 and P(w,) =1/3 for the class-conditional probability
densities shown in Fig. 2.1. Thus 1in this case, given that a pattern 1s
measured to have feature value x = 14, the probability it is
in category w, is roughly 0.08, and that 1t is in @, 15 0.92,
At every x, the posteriors sum to 1.0



* Decision given the posterior probabilities

x 1S an observation for which:

if P(w, | x) > P(w, | x) > True state of nature = @,
if P(@,; | x) <P(@, | x)==) True state of nature = w,

Therefore:
whenever we observe a particular x, the probability of error is:
P(error | x) = P(w, | x) if we decide w,
P(error | x) = P(w, | x) if we decide w,



 Minimizing the probability of error

Decide w,; if P(w, | x) > P(w, | x); otherwise decide w,

P(error) = jp(error,x)dx: jP(error|x)p(x)dx

If for every x we insure that P(error|x) 1s as small as possible,
then the integral must be as small as possible.

Therefore:
P(error|x) = min [P(w,|x), P(@,|x)]
(Bayes decision)
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Example of the two regions R, and R, formed by the Bayesian classifier for the case of
two equiprobable classes.

X0 +co
1 1
P, = — X dx + — X dx
e=5 [P( |w2) > fp( lw1) 0
e %0



* By eliminating this scale factor, p(x), we
obtain the following completely equivalent
decision rule:

* Decide o, if p(x|w,)P(w,) > p(x|®,)P(w,);
otherwise decide w,.

* Note using evidence p(x) insure us that
P(w,|x) + P(@,]x) = 1.
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Bayesian Decision Theory —
Continuous Features

* Generalization of the preceding ideas

— Use of more than one feature
— Use more than two states of nature

— Allowing actions and not only decide on the state of
nature

— Introduce a loss function which 1s more general than
the probability of error
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* The use of more than one feature = the feature
vector X, where X 1S 1n a d-dimensional Euclidean
space RY, called the feature space.

* Allowing more feature than two states of nature
provides us with a useful generalization for a small
notational space expense.

« Allowing actions other than classification primarily
allows the possibility of rejection, 1.e., of refusing to
make a decision 1n close cases; this 1s a useful option
1f being indecisive 1s not too costly.
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Formally, the loss function states exactly how
costly loss each action 1s, and 1s used to convert
a probability determination into a decision.

Let {w, o, ..., ®.} be the set of ¢ states of nature
(“‘categories”)

Let {¢;, «,, ..., a,} be the set of possible actions

Let A(¢;| @) be the loss incurred for taking
action o; when the state of nature 1s o,
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Bayes’ formula:

p(X\wj)P(wj)’

P(w;lx) = (%)

where the evidence is now
p(x) = p(x|w;)Pw;).
j=1
the expected loss associated with taking action ¢, 1s merely

R(@ 1) =2 A | @)P(@; 1%

An expected loss 1s called a risk, and R(«|x) 1s called the
conditional risk.
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We shall show that this Bayes decision procedure actually
provides the optimal performance on an overall risk.

A general decision rule is a function a(x) that tells us which
rule action to take for every possible observation. For every x the
decision function o(x) assumes one of the a values ¢, ..., a,.

a

The overall risk is givenby R = / R(a(x)|x)p(x) dx,
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Overall risk
R=Sumoftall R(a; | x) tori=1,...,a
H\/

Conditional risk

Minimizing R <> Minimizing R(¢;|x) fori=1,..., a

j=cC
R(e; [X) :Zl(ai |a)j)P(a)j | X)
j=1
fori=1,...,a

Selecting the action ¢, for which R(¢;|x) 1s minimum. The resulting
minimum overall risk is called the Bayes risk, denoted R”, and is
the best performance that can be achieved.
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* Two-category classification

a; : deciding w,

Q, : deciding w,

A.

ij

= Al ) be loss incurred for deciding @, when

the true state of nature 1s @,

Conditional risk:

R(«,
R(a,

x) = APl |x) + A;,P(0, | x)
X) = AyP(w; | x) + AP(w, | x)
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Our rule 1s the following:
if R | x) < Rea, | v

action «;: “decide w,” 1s taken

This results 1n the equivalent rule:
decide w; 1t (4,,-4,;;) P(@;X) >(4;,-4,,)P(@,|X)
Or

(A2-41) p(X|@y) P(@)) > (4)5-45,) p(X|@,) P(w,)
and decide o, otherwise
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Likelihood ratio:

The preceding rule 1s equivalent to the following rule: 1f
O(X a)l) > 112 _2“22 P(COZ)
(X[ @,) Ay =4y P(@)

Then take action ¢, (decide w,)

Otherwise take action «, (decide w,)

* We can consider p(x|w;) a function of ; (1.e., the likelihood

function), and then form the likelihood ratio p(X|w,)/p(X|®,).

Optimal decision property: “If the likelihood ratio
exceeds a threshold value independent of the iput
pattern x, we can take optimal actions™

21



Exercise

Select the optimal decision where:

Q= {0)19 (’02}

p(x|w;)

> N(2, 0.5) (Normal distribution)

p(X|m,) !

P(w,) =2/3
P(w,) =1/3

> N(1.5, 0.2)
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