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• Bayesian decision theory is a fundamental 

statistical approach to the problem of pattern 

classification. This approach is based on 

quantifying the tradeoffs between various 

classification decisions using probability and 

the costs that accompany such decisions. 

Chapter 2:  

Bayesian Decision Theory (Part 1) 

Introduction: 
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• The sea bass/salmon example 

 

– State of nature, prior 

 

• State of nature is a random variable 

• The catch of salmon and sea bass is equiprobable 

= 1 for see bass and  = 2 for salmon 

P(1) a priori probability that the next fish is sea bass 

P(1) = P(2)   (uniform priors) 

P(1) + P(2) = 1 (exclusivity and exhaustivity) 
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• Decision rule with only the prior information 
– Decide 1 if P(1) > P(2) otherwise decide 2 

• In most circumstances we are not asked to make decisions with 
so little information. 
– We might for instance use a lightness measurement x to improve our 

classifier. 

 

• Use of the class – conditional information 
 

• The probability density function p(x|ω1) should be written as 
pX(x|ω1) to indicate that we are speaking about a particular 
density function for the random variable X. 

 

• p(x|1) and p(x|2) describe the difference in lightness between 
populations of sea and salmon 

 
We generally use an upper-case P(·) to denote a probability mass 

function and a lower-case p(·) to denote a probability density function. 
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Figure 2.1: Hypothetical class-conditional probability density 

functions show the probability density of  measuring a particular 

 feature value x given the pattern is in category ωi. If  x represents 

 the length of  a fish, the two curves might describe the difference 

 in length of  populations of  two types of  fish. Density functions are 

normalized, and thus the area under each curve is 1.0. 
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• Posterior, likelihood, evidence 

• Suppose that we know both the prior probabilities 
P(ωj) and the conditional densities p(x|ωj). Suppose 
further that we measure the lightness of a fish and 
discover that its value is x. How does this 
measurement influence our attitude concerning the 
true state of nature — that is, the category of the 
fish? 

• The (joint) probability density of finding a pattern 
that is in category ωj and has feature value x can be 
written two ways: 

• p(ωj,x) = P(ωj|x)p(x) = p(x|ωj)P(ωj) 
Bayes’ formula 

likelihood prior
posterior

evidence



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Notice that in Bayes’ formula the product of the likelihood and the 

prior probability that is most important in determining the 

posterior probability; the evidence factor, p(x), can be viewed as 

merely a scale factor that guarantees that the posterior probabilities 

sum to one 

If we have an observation x for which P(ω1|x) is greater than  

P(ω2|x), we would naturally be inclined to decide that the true 

state of nature is ω1. 

Where in case of two categories 
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Figure 2.2: Posterior probabilities for the particular priors  

P(ω1) = 2/3 and P(ω2) =1/3 for the class-conditional probability 

densities shown in Fig. 2.1. Thus in this case, given that a pattern is 

measured to have feature value x = 14, the probability it is 

in category ω2 is roughly 0.08, and that it is in ω1 is 0.92.  

At every x, the posteriors sum to 1.0 
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• Decision given the posterior probabilities 

 

 x is an observation for which: 

 

 if P(1 | x) > P(2 | x)           True state of nature = 1 

 if P(1 | x) < P(2 | x)           True state of nature = 2 

 

 Therefore: 

  whenever we observe a particular x, the probability of error is: 

   P(error | x) = P(1 | x) if we decide 2 

   P(error | x) = P(2 | x) if we decide 1 



9 

• Minimizing the probability of error  

 

 Decide 1 if P(1 | x) > P(2 | x); otherwise decide 2 

 

 

 

 

 

 Therefore: 

    P(error|x) = min [P(1|x), P(2|x)] 

                                  (Bayes decision) 

If for every x we insure that P(error|x) is as small as possible,  

then the integral must be as small as possible. 

 







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Example of the two regions R1 and R2 formed by the Bayesian classifier for the case of 

two equiprobable classes. 
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• By eliminating this scale factor, p(x), we 

obtain the following completely equivalent 

decision rule:  

• Decide ω1 if p(x|ω1)P(ω1) > p(x|ω2)P(ω2); 

otherwise decide ω2. 

 

• Note using evidence p(x) insure us that 

P(ω1|x) + P(ω2|x) = 1. 
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Bayesian Decision Theory – 

Continuous Features 

• Generalization of the preceding ideas 

 

– Use of more than one feature 

– Use more than two states of nature 

– Allowing actions and not only decide on the state of 

nature 

– Introduce a loss function which is more general than 

the probability of error 
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• The use of more than one feature  the feature 
vector x, where x is in a d-dimensional Euclidean 
space Rd, called the feature space. 

• Allowing more feature than two states of nature 
provides us with a useful generalization for a small 
notational space expense. 

• Allowing actions other than classification primarily 
allows the possibility of rejection, i.e., of refusing to 
make a decision in close cases; this is a useful option 
if being indecisive is not too costly. 
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R, a reject region 

A, an acceptance or 

classification region 

where t is a threshold. 

Illustration of 

acceptance and 

reject regions. 
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Let {1, 2,…, c} be the set of c states of nature 

(“categories”) 

 

Let {1, 2,…, a} be the set of possible actions 

 

Let (i|j) be the loss incurred for taking 

action i when the state of nature is j 

Formally, the loss function states exactly how 
costly loss each action is, and is used to convert 
a probability determination into a decision. 
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Bayes’ formula: 

where the evidence is now 

the expected loss associated with taking action αi is merely 

An expected loss is called a risk, and R(αi|x) is called the 

conditional risk. 
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We shall show that this Bayes decision procedure actually 

provides the optimal performance on an overall risk. 

A general decision rule is a function α(x) that tells us which 

rule action to take for every possible observation. For every x the 

decision function α(x) assumes one of the a values α1 , ..., αa. 

The overall risk is given by 
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           Overall risk 

R = Sum of all R(i | x) for i = 1,…,a 

 

 

Minimizing R           Minimizing R(i|x) for i = 1,…, a 

 

 

 

                                               

Conditional risk 
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for i = 1,…,a 

Selecting the action αi for which R(αi|x) is minimum. The resulting 

minimum overall risk is called the Bayes risk, denoted  R*, and is  

the best performance that can be achieved. 
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• Two-category classification 

 1 : deciding 1 

 2  : deciding 2 

 ij  = (i|j) be loss incurred for deciding i when   

the true state of nature is j 

 

Conditional risk: 

R(1 | x) = 11P(1 | x) + 12P(2 | x) 

R(2 | x) = 21P(1 | x) + 22P(2 | x)  
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Our rule is the following: 

 if R(1 | x) < R(2 | x)               

action 1: “decide 1” is taken 

 

This results in the equivalent rule: 

decide 1 if: (21-11) P(1|x) >(12-22)P(2|x) 

                                     Or  

(21-11) p(x|1) P(1) > (12-22) p(x|2) P(2) 

    and decide 2 otherwise 
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Likelihood ratio: 

 
The preceding rule is equivalent to the following rule: if 

 

 

 

Then take action 1 (decide 1) 

Otherwise take action 2 (decide 2) 

• We can consider p(x|ωj) a function of ωj (i.e., the likelihood 

function), and then form the likelihood ratio p(x|ω1)/p(x|ω2). 

 

Optimal decision property: “If the likelihood ratio 

exceeds a threshold value independent of the input 

pattern x, we can take optimal actions” 
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Exercise 

Select the optimal decision where: 

 = {1, 2} 

p(x|1)                    N(2, 0.5) (Normal distribution) 

p(x|2)                    N(1.5, 0.2) 

 

P(1) = 2/3 

 P(2) = 1/3 
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