
Chapter 10
Unsupervised Learning & Clustering 

 Introduction
 Mixture Densities and Identifiability
 ML Estimates
 Application to Normal Mixtures
 K-means algorithm
 Unsupervised Bayesian Learning
 Data description and clustering
 Criterion function for clustering
 Hierarchical clustering
 The number of cluster problem and cluster validation
 On-line clustering
 Graph-theoretic methods
 PCA and ICA

 Low-dim reps and multidimensional scaling (self-organizing maps)

 Clustering and dimensionality reduction
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Introduction

• Previously, all our training samples were labeled: these 
procedures were said “supervised”

• We now investigate a number of “unsupervised” procedures 
which use unlabeled samples

• Collecting and Labeling a large set of sample patterns can be 
costly

• We can train with large amounts of (less expensive) 
unlabeled data, and only then use supervision to label the 
groupings found, this is appropriate for large “data mining” 
applications where the contents of a large database are not 
known beforehand
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• This is also appropriate in many applications 
when the characteristics of the patterns can 
change slowly with time

• Improved performance can be achieved if 
classifiers running in an unsupervised mode are 
used

• We can use unsupervised methods to identify 
features that will then be useful for categorization

• We gain some insight into the nature (or 
structure) of the data
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Mixture Densities & Identifiability
– We shall begin with the assumption that the functional 

forms for the underlying probability densities are known 
and that the only thing that must be learned is the value 
of an unknown parameter vector

– We make the following assumptions:

• The samples come from a known number c of classes

• The prior probabilities P(j) for each class are known 
(j = 1, …,c) 

• P(x|j, j) (j = 1, …,c) are known

• The values of the c parameter vectors 1, 2, …, c are unknown
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– The category labels are unknown

• This density function is called a mixture density

• Our goal will be to use samples drawn from this 
mixture density to estimate the unknown 
parameter vector . 

• Once  is known, we can decompose the 
mixture into its components and use a MAP 
classifier on the derived densities.
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• Definition
A density P(x | ) is said to be identifiable if 

  ΄ implies that there exists an x such that:

P(x | )  P(x | ΄ )

As a simple example, consider the case where x is binary and 
P(x | ) is the mixture:

Assume that:

P(x = 1 | ) = 0.6  P(x = 0 | ) = 0.4 

by replacing these probabilities values, we obtain: 

1 + 2 = 1.2

Thus, we have a case in which the mixture distribution is completely 
unidentifiable, and therefore unsupervised learning is impossible.
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• In the discrete distributions, if there are too many components in the 

mixture, there may be more unknowns than independent equations, 

and identifiability can become a serious problem!

• While it can be shown that mixtures of normal densities are usually 

identifiable, the parameters in the simple mixture density

cannot be uniquely identified if P(1) = P(2)

(we cannot recover a unique  even from an infinite amount of data!)

•  = (1, 2) and  = (2, 1) are two possible vectors that can be 

interchanged without affecting P(x | ).

• Identifiability can be a problem, we always assume that the densities 

we are dealing with are identifiable!
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ML Estimates

• Suppose that we have a set D = {x1, …, xn} of n
unlabeled samples drawn independently from the 
mixture density

( is fixed but unknown!)

The gradient of the log-likelihood is:
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Since the gradient must vanish at the value of i

that maximizes l therefore, 

the ML estimate         must satisfy the conditions

By including the prior probabilities as unknown variables, we 
finally obtain (problem 6):

1

( ln ( | )),
n

k

k

l p x θ

i̂

1

ˆ ˆ( | , ) ln ( | , ) 0  ( 1,..., ) ( )
n

i k k i i

k

P p i c a 


   iθ
x θ x θ

),|(ln),|(
1

iikk

n

k

i pPl
ii

θxθx θθ   


Constraints:
10



n

k 1

n

k 1

i

1

1 ˆˆ ˆ( ) ( | , )                                        (11)

ˆ ˆˆ( | , ) ln ( | , ) 0                     (12)

ˆ ˆ( | ) ( )ˆˆ:  P( | , )        
ˆ ˆ( | , ) ( )

i

i i k

i k k i i

k i i i
k c

k j j j

j

P P
n

P p

p P
where

p P

 

  

 


 









 









θ

x θ

x x θ

x ,θ
x θ

x θ

 (13)

Equation 11 states that the maximum-likelihood estimate of 

the probability of a category is the average over the entire 

data set of the estimate derived from each sample — each 

sample is weighted equally.

Equation 13 is ultimately related to Bayes Theorem, but 

notice that in estimating the probability for class ωi, the 

numerator on the right-hand side depends on       and not the 

full     directly.
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Applications to Normal Mixtures

p(x | i, i) ~ N(i, i)

Case 1 = Simplest case

Case i i P(i) c

1 ? √ √ √

2 ? ? ? √

3 ? ? ? ?
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Case 1: Unknown mean vectors
i = i  i = 1, …, c

its derivative is

the maximum-likelihood estimate        must satisfy

After multiplying by Σi and rearranging terms, we obtain the 

solution:
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The ML estimate for μi is merely a weighted average

of the samples; the weight for the kth sample is an

estimate of how likely it is that xk belongs to the ith

class. If happened to be 1.0 for some of

the samples and 0.0 for the rest, then would be the

mean of those samples estimated to belong to the ith

class. More generally, suppose that is sufficiently

close to the true value of μi that is

essentially the true posterior probability for ωi.
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)ˆ,|( μxkiP  is the fraction of those samples having 

value xk that come from the i-th class, and        is 

the average of the samples coming from the i-th

class. Unfortunately, equation (1) does not give        

explicitly and if we substitute

with p(x|ωi,    ) ∼ N(    , Σi), we obtain a tangled snarl 

of coupled simultaneous nonlinear equations.
iμ̂ iμ̂

iμ̂

iμ̂
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• However, if we have some way of obtaining good initial 

estimates           for the unknown means, therefore equation 

(1) can be seen as an iterative process for improving the 

estimates

• This is a gradient ascent for maximizing the log-likelihood 

function

• If the overlap between component densities is small, then 

the coupling between classes will be small and convergence 

will be fast.
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• Example:

Consider the simple two-component one-dimensional 
normal mixture

(2 clusters!)

Let’s set 1 = -2, 2 = 2 and draw 25 samples sequentially 
from this mixture. The log-likelihood function is:
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The maximum value of l occurs at:

(which are not far from the true values: 1 = -2 and 2 = +2)

There is another peak at                                                       
which has almost the same height as can be seen from 
the following figure. 

when the mixture density is not identifiable, the ML 
solution is not unique

1 2
ˆ ˆ2.130    and     1.668   

257.1ˆ and 085.2ˆ
21  
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FIGURE 10.1. (Above) The source
mixture density used to generate
sample data, and two maximum
likelihood estimates based on
the data in the table. (Bottom)
Loglikelihood of a mixture model
consisting of two univariate
Gaussians as a function of their
means, for the data in the table.
Trajectories for the iterative
maximum likelihood estimation
of the means of a two-Gaussian
mixture model based on the data
are shown as red lines. Two local
optima (with log-likelihoods
−52.2 and −56.7) correspond to
the two density estimates shown
above.
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Case 2: All parameters unknown (c is known)

– If no constraints are placed on the covariance 
matrix, the ML principle yields useless singular 
solutions.

– Exp: Let p(x | , 2) be the two-component normal 
mixture:
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Suppose  = x1, therefore:

For the rest of the samples:

Finally,

The likelihood is therefore large and the maximum-likelihood 
solution becomes singular. 
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We had

1. Only half of the off-diagonal elements of Σi are 

independent.

2. It is convenient to let the independent elements of Σi
-1 rather 

than Σi be the unknown.

The actual differentiation of the above equation with respect to

the elements of µi and Σi
-1 is relatively routine.

Let xp(k) be the pth element of xk, µp(i) be the pth element 

of µi, σpq(i) be the pqth element of Σi, and σpq(i)be the 

pqth element of Σi
-1. Then differentiation gives:

Note:
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and

where δpq is the Kronecker delta.

We substitute these results in Eq. 12 and perform a 

small amount of algebraic manipulation, then we have 

Equations (24-26).
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• Adding an assumption

Consider the largest of the finite local maxima of the likelihood 
function and use the ML estimation.

We obtain the following (after algebraic manipulations):
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In the extreme case where is 1.0 when xk is from

Class ωi and 0.0 otherwise, is the fraction of samples from

ωi, is the mean of those samples, and is the corresponding

sample covariance matrix. More generally, is between

0.0 and 1.0, and all of the samples play some role in the estimates.

However, the estimates are basically still frequency ratios, sample

means, and sample covariance matrices.
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Of the various techniques that can be used to obtain 
a solution, the most obvious approach is to use 
initial estimates to evaluate Eq. 27 for                    and 
then to use Eqs. 24 – 26 to update these estimates. 

If the initial estimates are very good, having perhaps 
been obtained from a fairly large set of labeled 
samples, convergence can be quite rapid.

Considerable simplification can be obtained if it is 
possible to assume that the covariance matrices are 
diagonal. This has the added virtue of reducing the 
number of unknown parameters, which is very 
important when the number of samples is not large.

)ˆ,|(ˆ θxkiP 
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Chapter 10-part2
• K-Means Clustering

– Goal: find the c mean vectors 1, 2, …, c

– Replace the squared Mahalanobis distance

– Find the mean         nearest to xk and approximate

as:

– Use the iterative scheme to find 
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– If n is the known number of patterns and c the desired 
number of clusters, the k-means algorithm is:               
(Note: c samples randomly chosen from the dataset as 
initial cluster centers)

Begin

initialize n, c, 1, 2, …, c(randomly 
selected)

do classify n samples according to 

nearest i
recompute i

until no change in i
return 1, 2, …, c

End

Exercise 2 p.594 (Textbook)
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• Considering the example in the previous figure

Figure 10.1: The k-means clustering procedure is a form of stochastic hill
climbing in the log-likelihood function. The contours represent equal log-
likelihood values for the one-dimensional data in Example 1. The dots indicate
parameter values after different iterations of the k-means algorithm. Six of the
starting points shown lead to local maxima, whereas two (i.e., μ1(0) = μ2(0)) lead
to a saddle point near μ = 0. 30



• Figure 10.1 shows the sequence of values for      
and      obtained for several different starting 
points. Since interchanging      and      merely 
interchanges the labels assigned to the data, 
the trajectories are symmetric about the line    

The trajectories lead either to the 
point     = −2.176,      = 1.684 or to its 
symmetric image. This is close to the solution 
found by the maximum-likelihood method 
(viz.,       = −2.130 and       = 1.688), and the 
trajectories show a general resemblance to 
those shown in Example 1.
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1μ̂

.ˆˆ
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FIGURE 10.3. Trajectories for the means of the k-means 
clustering procedure applied to two-dimensional data. The final 
Voronoi tesselation (for classification) is also shown— the means 
correspond to the “centers” of the Voronoi cells. In this case, 
convergence is obtained in three iterations.

C=3

The three initial 

cluster centers, 

chosen randomly 

from the training 

points.
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Fuzzy k-means clustering

• In every iteration of the classical k-means 
procedure, each data point is assumed to be in 
exactly one cluster

• We can relax this condition and assume that each 
sample xj has some graded or “fuzzy” cluster 
membership μi(xj) in cluster ωi, where 0≤ μi(xj) ≤ 1.

• At root, these “memberships” are equivalent to the 
probabilities

• In the resulting fuzzy k-means clustering algorithm 
we seek a minimum of a global cost function

)ˆ,|(ˆ θx jiP 
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where b is a free parameter chosen to adjust the
“blending” of different clusters. If b is set to 0, this
criterion function is merely a sum-of-squared errors
criterion we shall see again in Eq. 49. If b>1, criterion
allows each pattern to belong to multiple clusters.
The probabilities of cluster membership for each point
are normalized as

At the solution, i.e., the minimum of L, we have

(25)
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Then we have

and

(27)

(28)

Algorithm 2 (Fuzzy k-means clustering)
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At early iterations the means lie near the center of the full data 
set because each point has a non-negligible “membership” (i.e., 
probability) in each cluster. At later iterations the means separate 
and each membership tends toward the value 1.0 or 0.0.
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the classical k-means algorithm is just of special case 
where the memberships for all points obey
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*Unsupervised Bayesian Learning

• Other than the ML estimate, the Bayesian 
estimation technique can also be used in the 
unsupervised case (see Ch: 3 - ML & Bayesian 
methods)
– The number of classes is known
– So as their prior distributions and the forms of the 

class-conditional probability densities p(x|ωj, θj)

– The parameters’ vector θ is unknown and is assumed 
as a random variable

– Part of the knowledge about θ is contained in the 
priors p(θ), and the rest is the training samples

– We compute the posterior distribution using the 
training samples
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the familiar mixture density is

Since the selection of x is independent of the samples, we have 

p(x|θ,ωi,D) = p(x|ωi, θi). Similarly, since knowledge of the state 

of nature when x is selected tells us nothing about the distribution 

of θ, we have p(θ|ωi,D) = p(θ|D)
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• Learning the Parameter Vector :     

• Using Bayes

• Assuming the independence of the samples

or alternately (denoting Dn the set of n samples)

• If p() is almost uniform in the region where p(D|) peaks, then 
p(|D) peaks in the same place.
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• If the only significant peak occurs at         and the peak is very 
sharp, then Eqs 37 & 39 yield

and

• Therefore, the ML estimate is justified.

• Both approaches coincide if large amounts of data are available.

• In small sample size problems they can agree or not, depending 
on the form of the distributions

• The ML method is typically easier 

to implement than the Bayesian one
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• The formal Bayesian solution to the unsupervised learning of the 
parameters of a mixture density is similar to the supervised
learning of the parameters of a component density.

• But, there are significant differences: the issue of identifiability, 
and the computational complexity

• The issue of identifiability 

– With SL, the lack of identifiability means that we do not obtain a 
unique vector, but an equivalence class, which does not present 
theoretical difficulty as all yield the same component density.

– With UL, the lack of identifiability means that the mixture cannot 
be decomposed into its true components

 p(x / Dn) may still converge to p(x), but p(x /i, Dn) will not in 
general converge to p(x /i), hence there is a theoretical barrier. 

– It is here that a few labeled training samples would be valuable: for 
“decomposing” the mixture into its components.
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• The computational complexity
– With SL, the sufficient statistics allows the solutions to be computationally 

feasible. With UL, samples comes from a mixture density and there is little 
hope of finding simple exact sol. for p(D|).

• Another way of comparing the UL and SL is to consider the usual 
equation in which the mixture density is explicit

• If we consider the case in which P(1)=1 and all other prior 
probabilities as zero, corresponding to the supervised case in 
which all samples comes from the class 1, then we get

1

1

1 1

1

1

( | ) ( | )
( | )  

( | ) ( | )

( | , ) ( )

( | )

( | , ) ( ) ( | )

n
n n

n

n

c

n j j j

j n

c
n

n j j j

j

p p D
p D

p p D d

p P

p D

p P p D d

 

 





 





 









x θ θ
θ

x θ θ θ

x θ

θ

x θ θ θ

43



• Comparing the two equations, we see that observing an 
additional sample changes the estimate of .

• Ignoring the denominator which is independent of , the only 
significant difference is that 

– in the SL, we multiply the “prior” density for  by the component density 
p(xn |1, 1) 

– In the UL, we multiply the “prior” density by the whole mixture 

• Assuming that the sample did come from class 1, the effect of 
not knowing this category is to diminish the influence of xn in 
changing ..
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Summary of discussions

• If p() has been obtained by supervised learning from a large set of labeled 

samples, it will be far from uniform and it will have a dominant influence 

on p( |Dn) when n is small.

• Each sample sharpens p( |Dn). In the limit it will converge to a Dirac delta 

function centered at the true value of  .

• Thus, even though we don’t know the categories of the samples, 

identifiabiliy assures us that we can learn the unknown parameter .

• Unsupervised learning of parameters is very similar to supervised learning.

• One significant difference: with supervised learning the lack of 

identifiability means that instead of obtaining a unique parameter vector, we 

obtain an equivalent class of parameter vectors.

• For unsupervised training, a lack of identifiability means that even though 

p( |Dn) might converge to p(x), p(x|i,D
n) will not in general converge to 

p(x|i). In such cases a few labeled training samples can have a big impact 

on your ability to decompose the mixture distribution into its components.
45



Example 2: Unsupervised learning of Gaussian data

• Consider the one-dimensional, two-component mixture 
with p(x|ω1) ∼ N(µ, 1), p(x|ω2,θ) ∼ N(θ,1), where µ, 
P(ω1) and P(ω2) are known.

we seek the mean of the second component.

• Suppose that the prior density p(θ) is uniform from a to 
b. Then after one observation (x = x1) we have
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• If the sample x1 is in the range a ≤ x ≤ b, then 
p(θ|x1) peaks at θ = x1, of course. Otherwise it 
peaks either at θ = a if x1 <a or at θ = b if x1 >b. 

• With the addition of a second sample x2, p(θ|x1) 
changes to

• With n samples there will be 2n terms, and no simple sufficient 
statistics can be found to facilitate understanding or to simplify 
computations.
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It is possible to use the relation

and numerical integration to obtain an approximate 
numerical solution for p(θ|Dn).

• Data in previous Example used with:
• µ =2, P(ω1)=1/3, P(ω2)=2/3
• prior density p(θ) uniform from −4 to +4 

• As n goes to infinity we can confidently expect p(θ|Dn) to 
approach an impulse centered at θ = 2. This graph gives some 
idea of the rate of convergence.
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In unsupervised Bayesian learning of the parameter θ, the density 

becomes more peaked as the number of samples increases.  A wide 

uniform prior p(θ)=1/8,−4 ≤ θ ≤ 4 has been used.
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A narrower one, p(θ)=1/2, 1 ≤θ ≤ 3 has been used.

After all 25 samples have been used, the posterior densities are 

virtually identical in the two cases — the information in the 

samples overwhelms the prior information.
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* Decision-Directed Approximation
• Because the difference between supervised and unsupervised learning is the 

presence of labels, it is natural to propose the following:

 Use prior information to train a classifier.

 Label new data with this classifier.

 Use the new labeled samples to train a new (supervised) classifier.

• This approach is known as the decision-directed approach to unsupervised 

learning.

• Obvious dangers include:

 If the initial classifier is not reasonably good, the process can diverge.

 The tails of the distribution tend not to be modeled well this way, which 

results in significant overlap between the component densities.

• In practice, this approach works well because it is easy to leverage previous 

work for the initial classifier.

• Also, it is less computationally expensive than the pure Bayesian unsupervised 

learning approach.
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Data Clustering

• Structures of multidimensional patterns are important for 
clustering

• If we know that data come from a specific distribution, such 
data can be represented by a compact set of parameters 
(sufficient statistics)

• If samples are considered coming 

from a specific distribution, but 

actually they are not, these 

statistics is a misleading 

representation of the data

Figure 10.5: These four data sets have 
identical statistics up to second-order, i.e., 
the same mean μ and covariance Σ. In 
such cases it is important to include in the 
model more parameters to represent the 
structure more completely. 52



• Mixture of normal distributions can approximate a 
large variety of situations (i.e., any density 
functions).

• In these cases, one can use parametric methods to 
estimate the parameters of the mixture density.

• If little prior knowledge can be assumed, the 
assumption of a parametric form is meaningless: 
we are actually imposing structure on data, not 
finding structure of it!

• In these cases, one can use non parametric 
methods to estimate the unknown mixture density.

• If the goal is to find subclasses, one can use a 
clustering procedure to identify groups of data 
points having strong internal similarities
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Similarity measures

• The question is how to evaluate that the samples in one 
cluster are more similar among them than samples in 
other clusters.

• Two isses:

– How to measure the similarity between samples?

– How to evaluate a partitioning of a set into clusters?

• The most obvious measure of similarity (or dissimilarity) 
between 2 samples is the distance between them, i.e., 
define a metric.

• Once defined this measure, one would expect the distance 
between samples of the same cluster to be significantly 
less than the distance between samples in different 
classes.
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• Euclidean distance is a possible metric: a possible 
criterion is to assume samples belonging to same 
cluster if their distance is less than a threshold d0

• Clusters defined by Euclidean distance are invariant 
to translations and rotation of the feature space, 
but not invariant to general transformations that 
distort the distance relationship
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FIGURE 10.8. 
Scaling axes affects the 
clusters in a minimum 
distance cluster method.
In both these scaled 
cases, the assignment of 
points to clusters differ 
from that in the original 
space.
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FIGURE 10.9. If the data fall into well-separated clusters
(left), normalization by scaling for unit variance for the full
data may reduce the separation, and hence be undesirable
(right). Such a normalization may in fact be appropriate if the
full data set arises from a single fundamental process (with
noise), but inappropriate if there are several different
processes, as shown here.
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• To achieve invariance, one can normalize the data, 
e.g., such that they all have zero means and unit 
variance, or use principal components for 
invariance to rotation

• A broad class of metrics is the Minkowsky metric

where q1 is a selectable parameter:

q = 1  Manhattan or city block metric

q = 2  Euclidean metric

• One can also used a nonmetric similarity function 
s(x,x΄) to compare 2 vectors.

1/

1

( , ) '

q
d

q

k k

k

d x x


 
  
 
x x'

58



• It is typically a symmetric function whose value 
is large when x and x΄ are similar.

• For example, the normalized inner product

• In case of binary-valued features, we have, e.g.:
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Ch10-part3: Clustering as optimization

• The first issue: how to measure “similarity”?

• The second issue: how to evaluate a partitioning 
of a set into clusters?

• Clustering can be posted as an optimization of a 
criterion function

– The sum-of-squared-error criterion and its variants

– Scatter criteria

• The sum-of-squared-error criterion

– Let ni the number of samples in Di, and mi the mean 
of those samples 1
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i
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– The sum of squared error is defined as

– This criterion defines clusters as their mean vectors mi in 
the sense that it minimizes the sum of the squared lengths 
of the error x - mi.

– The optimal partition is defined as one that minimizes Je, 
also called minimum variance partition.

– Work fine when clusters form well separated compact 
clouds, less when there are great differences in the 
number of samples in different clusters.
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Related Minimum Variance Criteria

By some simple algebraic manipulation we can eliminate the 
mean vectors from the expression for Je and obtain the 
equivalent expression

where

is the average squared distance between points in the ith
cluster, and emphasizes the fact that the sum-of-squared-
error criterion uses Euclidean distance as the measure of 
similarity. More generally
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Scatter Criteria
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• Scatter matrices used in multiple discriminant
analysis, i.e., the within-scatter matrix SW and the
between-scatter matrix SB

ST = SB + SW

that depends only from the set of samples (not on
the partitioning)

• The criteria can be defined to minimize the within-
cluster or maximize the between-cluster scatter

• The trace (sum of diagonal elements) is the
simplest scalar measure of the scatter matrix, as it
is proportional to the sum of the variances in the
coordinate directions
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that it is in practice the sum-of-squared-error criterion.

– As tr[ST] = tr[SW] + tr[SB] and tr[ST] is independent from
the partitioning, no new results can be derived by
maximizing tr[SB].

– However, seeking to minimize the within-cluster criterion
Je=tr[SW], is equivalent to maximize the between-cluster
criterion

where m is the total mean vector:
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The Determinant Criterion
• Since SB will be singular if the number of clusters is less than

or equal to the dimensionality, |SB| is obviously a poor choice
for a criterion function. Furthermore, SW may become
singular, and will certainly be so if n − c is less than the
dimensionality d. However, if we assume that SW is
nonsingular, we are led to consider the determinant criterion
function

• We observed before that the minimum-squared-error
partition might change if the axes are scaled, though this
does not happen with Jd. Thus Jd is to be favored under
conditions where there may be unknown or irrelevant linear
transformations of the data.
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Invariant Criteria

• The eigenvalues λ1, . . . , λd of                  are 
invariant under nonsingular linear 
transformations of the data

• Since the trace of a matrix is the sum of its 
eigenvalues, one might select to maximize the 
criterion function

• By using the relation ST = SW +SB

and
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20 points

The clusters 
found by 
minimizing a 
criterion 
depends upon 
the criterion 
function as well 
as the assumed 
number of 
clusters.
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Iterative optimization

• Once  a criterion function has been selected, clustering 
becomes a problem of discrete optimization.

• As the sample set is finite there is a finite number of 
possible partitions, and the optimal one can be always 
found by exhaustive search (cn/n! Ways of partitioning).

• Most frequently, it is adopted an iterative optimization 
procedure to select the optimal partitions

• The basic idea lies in starting from a reasonable initial 
partition and “move” samples from one cluster to another 
trying to minimize the criterion function.

• In general, this kinds of approaches guarantee local, not 
global, optimization.

69



• Let us consider an iterative procedure to 
minimize the sum-of-squared-error criterion Je

where Ji is the effective error per cluster.

• It can be proved that if a sample      currently in 
cluster Di is tentatively moved in Dj, the change 
of the errors in the 2 clusters is
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• Hence, the transfer is advantegeous if the 
decrease in Ji is larger than the increase in Jj
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• This procedure is a sequential version of the k-means
algorithm, with the difference that k-means waits until 
n samples have been reclassified before updating, 
whereas the latter updates each time a sample is 
reclassified.

• This procedure is more prone to be trapped in local 
minima, and depends on the order of presentation of 
the samples, but it is online!

• Starting point is always a problem:

• Random centers of clusters

• Repetition with different random initialization

• c-cluster starting point as the solution of the (c-1)-cluster 
problem plus the sample farthest from the nearer cluster 
center
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Hierarchical Clustering

• Many times, clusters are not disjoint, but a 

cluster may have subclusters, in turn having sub-

subclusters, etc.

• Consider a sequence of partitions of the n

samples into c clusters

• The first is a partition into n cluster, each one 

containing exactly one sample

• The second is a partition into n-1 clusters, the third 

into n-2, and so on, until the n-th in which there is only 

one cluster containing all of the samples

• At the level k in the sequence, c = n-k+1.
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• Given any two samples x and x΄, they will be grouped together 
at some level, and if they are grouped a level k, they remain 
grouped for all higher levels

• Hierarchical clustering  tree representation called dendrogram
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• The similarity values may help to determine if 
the grouping are natural or forced, but if they 
are evenly distributed no information can be 
gained

• Another representation is based on set, e.g., on 
the Venn diagrams

FIGURE 10.12. A set or Venn diagram 
representation of two-dimensional 
data (which was used in the 
dendrogram of Fig. 10.11) reveals the 
hierarchical structure but not the 
quantitative distances between 
clusters. The levels are numbered by 
k, in red.
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• Hierarchical clustering can be divided in 
agglomerative (accumulative, collective) and 
divisive (creating discord or disunity).

• Agglomerative (bottom up, clumping): start 
with n singleton cluster and form the sequence 
by merging clusters

• Divisive (top down, splitting): start with all of 
the samples in one cluster and form the 
sequence by successively splitting clusters
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Agglomerative hierarchical clustering

• The procedure terminates when the specified 
number of cluster has been obtained, and returns 
the cluster as sets of points, rather than the mean 
or a representative vector for each cluster
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• At any level, the distance between nearest clusters 
can provide the dissimilarity value for that level

• To find the nearest clusters, one can use

which behave quite similar of the clusters are 
hyperspherical and well separated.

• The computational complexity is O(n2(c+d)), n>>c
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Nearest-neighbor algorithm
• When dmin is used, the algorithm is called the 

nearest neighbor algorithm
• If it is terminated when the distance between 

nearest clusters exceeds an arbitrary threshold, it is 
called single-linkage algorithm

• If data points are thought as nodes of a graph with 
edges forming a path between the nodes in the 
same subset Di, the merging of Di and Dj
corresponds to adding an edge between the 
nearest pair of node in Di and Dj

• The resulting graph never has any closed loop and 
it is a tree, if all subsets are linked we have a 
spanning tree (spanning tree = a tree with a path 
from node to any other node)
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• The use of dmin as a distance measure and the 
agglomerative clustering generate a minimal 
spanning tree

• Chaining effect: defect of this distance measure (right)

FIGURE 10.13. Two Gaussians

were used to generate two-

dimensional samples, shown in

pink and black. The nearest-

neighbor clustering algorithm gives

two clusters that well approximate

the generating Gaussians (left). If,

however, another particular sample

is generated (circled red point at the

right) and the procedure is

restarted, the clusters do not well

approximate the Gaussians. This

illustrates how the algorithm is

sensitive to the details of the

samples.
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The farthest neighbor algorithm

• When dmax is used, the algorithm is called the 
farthest neighbor algorithm

• If it is terminated when the distance between 
nearest clusters exceeds an arbitrary threshold, it is 
called complete-linkage algorithm

• This method discourages the growth of elongated 
clusters

• In the terminology of the graph theory, every 
cluster constitutes a complete subgraph, and the 
distance between two clusters is determined by the 
most distant nodes in the 2 clusters

81



• When two clusters are merged, the graph is 
changed by adding edges between every pair of 
nodes in the 2 clusters

• All the procedures involving minima or maxima are 
sensitive to outliers. The use of dmean or davg are 
natural compromises
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The problem of the number of clusters

• Typically, the number of clusters is known.

• When it’s not, there are several ways of proceed.

• When clustering is done by extremizing a criterion function, 
a common approach is to repeat the clustering with c=1, 
c=2, c=3, etc.

• Another approach is to state a threshold for the creation of 
a new cluster; this adapts to on line cases but depends on 
the order of presentation of data.

• These approaches are similar to model selection 
procedures, typically used to determine the topology and 
number of states (e.g., clusters, parameters) of a model, 
given a specific application.
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Graph-theoretic methods
• The graph theory permits to consider particular 

structure of data.

• The procedure of setting a distance as a 
threshold to place 2 points in the same cluster 
can be generalized to arbitrary similarity 
measures.

• If s0 is a threshold value, we can say that xi is 
similar to xj if s(xi, xj) > s0.

• Hence, we define a similarity matrix S = [sij]
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• This matrix induces a similarity graph, dual to S, in 
which nodes corresponds to points and edge joins 
node i and j iff sij=1.

• Single-linkage alg.: two samples x and x′ are in the 
same cluster if there exists a chain x, x1, x2, …, xk, 
x′, such that x is similar to x1, x1 to x2, and so on 
connected components of the graph

• Complete-link alg.: all samples in a given cluster 
must be similar to one another and no sample can be 
in more than one cluster.

• Nearest-neighbor algorithm is a method to find the 
minimum spanning tree and vice versa
– Removal of the longest edge produce a 2-cluster 

grouping, removal of the next longest edge produces a 3-
cluster grouping, and so on.
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• This is a divisive hierarchical procedure, and 
suggest ways to dividing the graph in subgraphs

– E.g., in selecting an edge to remove, comparing its 
length with the lengths of the other edges incident 
the nodes

Figure 10.20: The removal of inconsistent edges—ones with length significantly larger 

than the average incident upon a node — may yield natural clusters. The original data 

is shown at the left and its minimal spanning tree is shown in the middle. At virtually 

every node, incident edges are of nearly the same length. Each of the two nodes shown 

in red are exceptions: their incident edges are of very different lengths. When the two 

such inconsistent edges are removed, three clusters are produced, as shown at the right.86



• One useful statistics to be estimated from the 
minimal spanning tree is the edge length 
distribution

• For instance, in the case of 2 dense cluster 
immersed in a sparse set of points:

Figure 10.21: A minimal 
spanning tree is shown at 
the left; its bimodal edge 
length distribution is 
evident in the histogram 
below. If all links of 
intermediate or high 
length are removed (red), 
the two natural clusters 
are revealed (right).
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Unsupervised Learning And Clustering

• Competitive Learning
– Unknown number of clusters

– Adaptive Resonance

• Component analysis
– Principal component analysis (PCA)

– Non-linear component analysis

– Independent component analysis (ICA)

• Low-Dimensional Representations and Multi-
dimensional Scaling (MDS)
– Self-organizing feature maps

– Clustering and Dimensionality Reduction
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