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Tree Uses Nodes and Leaves
2



Divide and Conquer
3

 Internal decision nodes

 Univariate: Uses a single attribute, xi

Numeric xi : Binary split : xi > wm

Discrete xi : n-way split for n possible values

 Multivariate: Uses all attributes, x

 Leaves

 Classification: Class labels, or proportions

 Regression: Numeric; r average, or local fit

 Learning is greedy; find the best split recursively 
(Breiman et al, 1984; Quinlan, 1986, 1993) 



Side Discussion “Greedy Algorithms”

4

 Fast and therefore attractive to solve NP-hard and other problems 

with high complexity. Later decisions are made in the context of 

decision selected early dramatically reducing the size of the 

search space.

 They do not backtrack: if they make a bad decision (based on 

local criteria), they never revise the decision.

 They are not guaranteed to find the optimal solutions, and 

sometimes can get deceived and find really bad solutions.

 In spite of what is said above, a lot successful and popular 

algorithms in Computer Science are greedy algorithms.

 Greedy algorithms are particularly popular in AI and Operations 

Research. 

Popular Greedy Algorithms: Decision Tree Induction,…



Classification Trees (ID3,CART,C4.5)
5

 For node m, Nm instances reach m, N
i
m belong to Ci

 Node m is pure if pi
m is 0 or 1

 Measure of impurity is entropy
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For a two-class problem p1 ≡ p and p2 = 1 − p, φ(p,1 − p) is a 
nonnegative function

1. Entropy

2. Gini index

3. Misclassification error

φ(p,1 − p) = 1 − max(p,1 − p) 

φ(p,1 − p) = 2p(1 − p) 

φ(p,1 − p) = −plog2 p − (1 − p)log2 (1 − p)

• φ(1/2,1/2) ≥ φ(p,1 − p), for any p ∈ [0,1].
• φ(0,1) = φ(1,0) = 0.
• φ(p,1−p) is increasing in p on [0,1/2] and decreasing in p on [1/2,1].
Examples are



 If node m is pure, generate a leaf and stop, otherwise 

split and continue recursively

 Impurity after split: Nmj of Nm take branch j. N
i
mj

belong to Ci

 Find the variable and split that min impurity (among 

all variables -- and split positions for numeric 

variables)

Best Split
7
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Tree Induction

 Greedy strategy.

 Split the records based on an attribute test that 

optimizes certain criterion.

 Issues

 Determine how to split the records

 How to specify the attribute test condition?

 How to determine the best split?

 Determine when to stop splitting

8



How to determine the Best Split?

Own

Car?

C0: 6

C1: 4

C0: 4

C1: 6

C0: 1

C1: 3

C0: 8

C1: 0

C0: 1

C1: 7

Car

Type?

C0: 1

C1: 0

C0: 1

C1: 0

C0: 0

C1: 1

Student

ID?

...

Yes No Family

Sports

Luxury c
1

c
10

c
20

C0: 0

C1: 1
...

c
11

Before Splitting: 10 records of class 0,      10 records of class 1

Before: E(1/2,1/2)

After: 4/20*E(1/4,3/4) + 8/20*E(1,0) + 8/20*E(1/8,7/8)
Gain: Before-After
Pick Test that has the highest gain!
Remark: E stands for Gini, Entropy (H), Impurity (1-maxc(P(c )), Gain-ratio
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Splitting Continuous Attributes

 Different ways of handling

 Discretization to form an ordinal categorical attribute

 Static – discretize once at the beginning

 Dynamic – ranges can be found by equal interval 
bucketing, equal frequency bucketing

(percentiles), clustering, or supervised   

clustering.

 Binary Decision: (A < v) or (A  v)

 consider all possible splits and finds the best cut v

10
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Stopping Criteria for Tree Induction

1. Grow entire tree

 Stop expanding a node when all the records belong to 

the same class

 Stop expanding a node when all the records have the 

same attribute values

2. Pre-pruning (do not grow complete tree)

1. Stop when only x examples are left (pre-pruning)

2. … other pre-pruning strategies 

12



How to Address Over-fitting in Decision Trees

The most popular approach: Post-pruning

Grow decision tree to its entirety

Trim the nodes of the decision tree in a bottom-up 

fashion

 If generalization error improves after trimming, 

replace sub-tree by a leaf node.

Class label of leaf node is determined from majority 

class of instances in the sub-tree

13



Advantages Decision Tree Based Classification

 Inexpensive to construct

 Extremely fast at classifying unknown records

 Easy to interpret for small-sized trees

 Okay for noisy data 

 Can handle both continuous and symbolic attributes

 Accuracy is comparable to other classification techniques for many 
simple data sets

 Decent average performance over many datasets 

 Kind of a standard—if you want to show that your “new” classification 
technique really “improves the world”  compare its performance 
against decision trees (e.g. C 5.0) using 10-fold cross-validation

 Does not need distance functions; only the order of attribute values is 
important for classification: 0.1,0.2,0.3 and 0.331,0.332, 0.333 is the 
same for a decision tree learner.   
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Disadvantages Decision Tree Based 

Classification

 Relies on rectangular approximation that might not be 

good for some dataset

 Selecting good learning algorithm parameters (e.g. 

degree of pruning) is non-trivial

 Ensemble techniques, support vector machines, and   

k-nn might obtain higher accuracies for a specific 

dataset.  

 More recently, forests (ensembles of decision trees) 

have gained some popularity.
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 Error at node m:

 After splitting:

Regression Trees
16
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 The drop in error for any split is given as the 
difference between Em (the mean square error from 
the estimated value) and E´m (the error after the 
split).

 We look for the split such that this drop is maximum 
or, equivalently, where E´m takes its minimum.

 The code given in figure 9.3 (slide 11) can be 
adapted to training a regression tree by replacing 
entropy calculations with mean square error and 
class labels with averages.

Regression Trees
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 Worst Possible Error:

 we can guarantee that the error for any instance is 
never larger than a given threshold.

 The acceptable error threshold is the complexity 
parameter; when it is small, we generate large trees 
and risk overfitting; when it is large, we underfit
and smooth too much.

 Linear regression fit over the instances choosing 
the leaf:

 max max t t

m mj mj
j t

E r g b  x

Regression Trees
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Model Selection in Trees



Pruning Trees
20

 Remove subtrees for better generalization (decrease 

variance)

 Prepruning: Early stopping

 Postpruning: Grow the whole tree then prune subtrees that 

overfit on the pruning set

 Prepruning is faster, postpruning is more accurate 

(requires a separate pruning set)



Rule Extraction from Trees

21

C4.5Rules 

(Quinlan, 1993)

21



Learning Rules from Data
22

 Rule induction is similar to tree induction but 

 tree induction is breadth-first, 

 rule induction is depth-first; one rule at a time

 Rule set contains rules; rules are conjunctions of terms

 Rule covers an example if all terms of the rule evaluate 
to true for the example

 Sequential covering: Generate rules one at a time until 
all positive examples are covered

 Rule Induction Algorithm: IREP, Ripper

 Rules are added to explain positive examples such that 
if an instance is not covered by any rule, then it is 
classified as negative.



Learning Rules
23

 One of the most expressive and human readable
representations for learned hypotheses is sets of production 
rules (if-then rules).

 Rules can be derived from other representations (e.g., 
decision trees) or they can be learned directly. Here, we are 
concentrating on the direct method.

 An important aspect of direct rule-learning algorithms is 
that they can learn sets of first-order rules which have 
much more representational power than the propositional
rules that can be derived from decision trees. 

 Rule Learning also allows the incorporation of background 
knowledge into the process.

 Learning rules is also useful for the data mining task of 
association rules mining.



Propositional versus First-Order Logic

24

 Propositional Logic does not include variables and 

thus cannot express general relations among the 

values of the attributes.

 Example 1: in Propositional logic, you can write:            

IF (Father1=Bob) ^ (Name2=Bob)^ 

(Female1=True) THEN Daughter1,2=True.

This rule applies only to a specific family!

 Example 2: In First-Order logic, you can write:                 

IF Father(y,x) ^ Female(y), THEN Daughter(x,y)

This rule (which you cannot write in Propositional 

Logic) applies to any family!



Learning Propositional Rules: Sequential 

Covering Algorithms
25

 The algorithm is called a sequential covering algorithm

because it sequentially learns a set of rules that together 

cover the whole set of positive examples.

 It has the advantage of reducing the problem of learning a 

disjunctive set of rules to a sequence of simpler problems, 

each requiring that a single conjunctive rule be learned.

 The final set of rules is sorted so that the most accurate 

rules are considered first at classification time.

 However, because it does not backtrack, this algorithm is 

not guaranteed to find the smallest or best set of rules →

Learn-one-rule must be very effective!



RIPPER
26

 Here are two kinds of loop in the Ripper 

algorithm:

Outer loop: adding one rule at a time to the rule 

base

 Inner loop: adding one condition at a time to the 

current rule

Conditions are added to the rule to maximize an 

information gain measure.

Conditions are added to the rule until it covers no 

negative example.



Ripper Algorithm 
27

 In Ripper, conditions are added to the rule to 

maximize an information gain measure

• R : the original rule

• R′ : the candidate rule after adding a condition

• N (N ′): the number of instances that are covered by R (R′)

• N+ (N ′+): the number of true positives in R (R′)

• s : the number of true positives in R and R′ (after adding the 

condition)

until it covers no negative example.
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O(Nlog2N)

DL: description length of 
the rule base

The description length of a rule base 
= (the sum of the description lengths 

of all the rules in the rule base) 
+ (the description of the instances

not covered by the rule base)
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Multivariate Trees
31

0( ) : 0T

m m mf w x w x
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 defines a hyperplane with 
arbitrary orientation.

 Leaf nodes define polyhedra in the input space.

 In a univariate node there are d possible 
orientations (wm) and Nm − 1 possible thresholds 
(−wm0), making an exhaustive search possible.

 In a multivariate node, there are possible  

hyperplanes and an exhaustive search is no longer 

practical.

0( ) : 0T

m m mf w x w x

2
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 

Multivariate Trees
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 Linear multivariate nodes are more flexible.

 Nonlinear multivariate nodes are even more 

flexible.

 Multilayer perceptron has been proposed.

 Sphere node is also possible.

where cm is the center and αm is the radius.

0( ) : 0T T

m m m mf w  x x W x w x

( ) :m m mf  x x c

Multivariate Trees


