Lecture Slides for

INTRODUCTION
T0O
MACHINE
LEARNING
3RD EDITION
ETHEM ALPAYDIN CHAPTER 9:
© The MIT Press, 2014 DeC|S|0n Trees

alpaydin@boun.edu.tr
http: / /www.cmpe.boun.edu.tr /~ethem /i2ml3e

Tree Uses Nodes and Leaves

Divide and Conqguer

- 4
o Internal decision nodes
o Univariate: Uses a single attribute, x;
= Numeric x; : Binary split: x; >w,,
= Discrete x; : n-way split for n possible values
o Multivariate: Uses all attributes, x

- Leaves
o Classification: Class labels, or proportions
o Regression: Numeric; r average, or local fit

o Learning Is greedy; find the best split recursively
(Breiman et al, 1984; Quinlan, 1986, 1993)

Side Discussion “Greedy Algorithms”

Fast and therefore attractive to solve NP-hard and other problems
with high complexity. Later decisions are made in the context of
decision selected early dramatically reducing the size of the
search space.

They do not backtrack: if they make a bad decision (based on
local criteria), they never revise the decision.

They are not guaranteed to find the optimal solutions, and
sometimes can get deceived and find really bad solutions.

In spite of what is said above, a lot successful and popular
algorithms in Computer Science are greedy algorithms.

Greedy algorithms are particularly popular in Al and Operations
Research.

Popular Greedy Algorithms: Decision Tree Induction,...

Classification Trees (ID3,CART,C4.5)

For node m, N, Instances reach m, Nim belong to C,

P(C,|x,m)= pi = Ny

p)

p)log,(

)~

Node mis pure if p' isOor1 I |
Measure of impurity Is entropy V j
) fo %

/ \

I, ==> pulog,p,,
=1

entropy=-p*log

05
P

Entropy = —plog, p— (- p)log,(1- p)

For a two-class problem pl=pand p?=1-p, ¢(p,1 - p)isa
nonnegative function

* #(1/2,1/2) 2 d(p,1 — p), for any p € [0,1].
* ®(0,1)=d(1,0)=0.

* ®(p,1-p) is increasing in p on [0,1/2] and decreasing in p on [1/2,1].
Examples are
1. Entropy
¢(p,1 - p)=-plog, p~(1-p)log, (1-p)

2. Gini index

¢(p,1-p)=2p(1 - p)

3. Misclassification error

¢(p,1-p)=1-max(p,1-p)

Best Split

If node m Is pure, generate a leaf and stop, otherwise
split and continue recursively

Impurity after split: N,; of N, take branch j. N
belong to C,

. . N B N,
P(Ci|x,m,j)5p:nj=NJ_ __Z J;pmJlogmeJ

mj

Find the variable and split that min impurity (among
all variables -- and split positions for numeric
variables)

Tree Induction

Greedy strategy.

Split the records based on an attribute test that
optimizes certain criterion.

Issues

Determine how to split the records
How to specify the attribute test condition?

How to determine the best split¢

Determine when to stop splitting

How to determine the Best Split?

Before Splitting: 10 records of class 0, 10 records of class 1
Before: E(1/2,1/2)

o o Car ~Student .
D7

- Type? -

After: 4/20%E(1/4,3/4) + 8/20*E(1,0) + 8/20*E(1/8,7/8)

Gain: Before-After

Pick Test that has the highest gain!

Remark: E stands for Gini, Entropy (H), Impurity (1-max(P(c)), Gain-ratio

Splitting Continuous Attributes

Different ways of handling

Discretization to form an ordinal categorical attribute
Static — discretize once at the beginning

Dynamic — ranges can be found by equal interval
bucketing, equal frequency bucketing
(percentiles), clustering, or supervised

clustering.

Binary Decision: (A<v)or (A>Vv)
consider all possible splits and finds the best cut v

11

Classification tree construction.

K

GenerateTree(X) | :_Z
If NodeEntropy(X)< 07 /* eq. 9.3 — i—1
Create leaf labelled by majority class in A
Return
i — SplitAttribute(X)
For each branch of x;
Find Aj; falling in branch
GenerateTree(X;)
SplitAttribute(X")
MinEnt— MAX
For all attributes i =1,....d " ° ijZK:

If e<MinEnt MinEnt «— e; bestf «— |
Else /* @; is numeric */
For all possible splits

Split A into A5, X5 on x;

e—SplitEntropy(X;. Xs)

If e«MinEnt MinEnt — e; bestf — |
Return bestf

' log, py,

Pr; 109, Py,

Stopping Criteria for Tree Induction

Grow entire tree

Stop expanding a node when all the records belong to
the same class

Stop expanding a node when all the records have the
same attribute values

Pre-pruning (do not grow complete tree)
Stop when only x examples are left (pre-pruning)
... other pre-pruning strategies

How to Address Over-fitting in Decision Trees

The most popular approach: Post-pruning
Grow decision tree to its entirety

Trim the nodes of the decision tree in a bottom-up
fashion

If generalization error improves after trimming,
replace sub-tree by a leaf node.

Class label of leaf node is determined from majority
class of instances in the sub-tree

Advantages Decision Tree Based Classification

Inexpensive to construct

Extremely fast at classifying unknown records

Easy to interpret for small-sized trees

Okay for noisy data

Can handle both continuous and symbolic attributes

Accuracy is comparable to other classification techniques for many
simple data sets

Decent average performance OVEl many datasets

Kind of a standard—if you want to show that your “new” classification
technique really “improves the world” = compare its performance
against decision trees (e.g. C 5.0) using 10-fold cross-validation

Does not need distance functions; only the order of attribute values is
Important for classification: 0.1,0.2,0.3 and 0.331,0.332, 0.333 is the
same for a decision tree learner.

Disadvantages Decision Tree Based
Classification

Relies on rectangular approximation that might not be
good for some dataset

Selecting good learning algorithm parameters (e.qg.
degree of pruning) iIs non-trivial

Ensemble techniques, support vector machines, and
k-nn might obtain higher accuracies for a specific
dataset.

More recently, forests (ensembles of decision trees)
have gained some popularity.

Regression Trees

Error at node m:

If at a node, the error is acceptable,
that is, E_ < 0., then a leaf node is

. (%)= {1 if X ex_ :Xx reaches node m
! O otherwise created and it stores the g value.

1 t 2 thm(xt) r
=N—mZt(f ~Gn) ba(X) + Gn = 3 b, (X)

MSE from the estimated value estimated value in node m
After splitting:
. (x)= {1 if xe X, :x reaches node mand branch j
" 0 otherwise

> by (x) rf
> by (x)

:_Z Z(_gml) (t) Onj =

Regression Trees

The drop in error for any split is given as the
difference between E_ (the mean square error from
the estimated value) and E ' (the error after the
split).

We look for the split such that this drop is maximum
or, equivalently, where E ' takes its minimum.

The code given in figure 9.3 (slide 11) can be
adapted to training a regression tree by replacing
entropy calculations with mean square error and
class labels with averages.

Regression Trees

Worst Possible Error:

t
D, (x)
we can guarantee that the error for any instance IS
never larger than a given threshold.

The acceptable error threshold Is the complexity
parameter; when it i1s small, we generate large trees
and risk overfitting; when it is large, we underfit
and smooth too much.

Linear regression fit over the instances choosing
the leaf:

t
E. = m?x mtax‘r — O

T
gm (X) — WmX + WmO

Model Selection in Trees

A =05
x
e w w ol
x x
L4
|:|_
x
-2 1 1 " 1 1 1 1
o 1 2 3 4 5 5
4 B =02
r
ey o 3I::n: "
L4
x \x—
L4
|:|_
x
_2 1 1 = 1 1 1 1
o 1 2 3 4 5 g
4 A = 0.05
= 7]
2__x_ﬁ‘_ * . L._‘
|:|_
x
-z 1 1 = 1 1 1 1
o 1 2 3 4 5 5

19

Pruning Trees
220y
- Remove subtrees for better generalization (decrease
variance)
o Prepruning: Early stopping

o Postpruning: Grow the whole tree then prune subtrees that
overfit on the pruning set

- Prepruning Is faster, postpruning is more accurate
(requires a separate pruning set)

Rule Extraction from Trees

X, Age
C4.5Rules x, @ Years in job
(Quinlan, 1993) x, : Gender
Yes x,: Job type

R1: IF (age>38.5) AND (years-in-job>2.5) THEN y =0.8
R2: IF (age>38.5) AND (years-in-job=2.5) THEN y =0.6
R3: IF (age=38.5) AND (job-type='A’) THEN y =0.4
R4: IF (age=38.5) AND (job-type='B’) THEN y =0.3
R5: IF (age=38.5) AND (job-type=‘C’) THEN y =0.2

earning Rules from Data

Rule induction i1s similar to tree induction but

tree induction is breadth-first,
rule induction is depth-first; one rule at a time

Rule set contains rules; rules are conjunctions of terms

Rule covers an example if all terms of the rule evaluate
to true for the example

Sequential covering: Generate rules one at a time until
all positive examples are covered

Rule Induction Algorithm: IREP, Ripper

Rules are added to explain positive examples such that
If an instance Is not covered by any rule, then it is
classified as negative.

Learning Rules

One of the most expressive and human readable _
representations for learned hypotheses Is sets of production
rules (if-then rules).

Rules can be derived from other representations (e.g.,
decision trees) or they can be learned directly. Here, we are
concentrating on the direct method.

An important aspect of direct rule-learning algorithms is
that they can learn sets of first-order rules which have
much more representational power than the propositional
rules that can be derived from decision trees.

Rule Learning also allows the incorporation of background
knowledge into the process.

Learning rules is also useful for the data mining task of
association rules mining.

Propositional versus First-Order Logic

Propositional Logic does not include variables and
thus cannot express general relations among the
values of the attributes.

Example 1: in Propositional logic, you can write:
IF (Father,=Bob) ~ (Name,=Bob)*
(Female,=True) THEN Daughter, ,=True.

This rule applies only to a specific family!

Example 2: In First-Order logic, you can write:
IF Father(y,x) ™ Female(y), THEN Daughter(x,y)

This rule (which you cannot write in Propositional
Logic) applies to any family!

Learning Propositional Rules: Sequential
Covering Algorithms

The algorithm is called a sequential covering algorithm
because It sequentially learns a set of rules that together
cover the whole set of positive examples.

It has the advantage of reducing the problem of learning a
disjunctive set of rules to a sequence of simpler problems,
each requiring that a single conjunctive rule be learned.

The final set of rules is sorted so that the most accurate
rules are considered first at classification time.

However, because It does not backtrack, this algorithm is
not guaranteed to find the smallest or best set of rules —
Learn-one-rule must be very effective!

RIPPER

Here are two kinds of loop in the Ripper
algorithm:

Outer loop: adding one rule at a time to the rule
base

Inner loop: adding one condition at a time to the
current rule

Conditions are added to the rule to maximize an
Information gain measure.

Conditions are added to the rule until it covers no
negative example.

Ripper Algorithm

In Ripper, conditions are added to the rule to

maximize an information gain measure
Gain(R,R)=s-(log, I\Ill ~—log, I\|\I|+
R : the original rule
R’ : the candidate rule after adding a condition
N (N "): the number of instances that are covered by R (R")
N, (N ’,): the number of true positives in R (R")

s . the number of true positives in R and R’ (after adding the

condition)
until it covers no negative example.
Pranning byRVM b-n p and n : the number of
maximizing rom(R) = =T true and false

Rule value metric positives respectively.

procedure IREP(Pos,Neg)
begin
Ruleset := ()
while Pos# # do
/* grow and prune a new rule */
split (Pos,Neg) into (GrowPos,GrowNeg)
and (PrunePos,PruneNeg)
Rule := GrowRule(GrowPos,GrowNeg)
Rule := PruneRule(Rule,PrunePos, PruneNeg)
if the error rate of Rule on
(PrunePos,PruneNeg) exceeds 50% then
return Ruleset
else
add Rule to Ruleset
remove examples covered by Rule
from (Pos,Neg)
endif
endwhile
return Ruleset

28
end

Ripper(Pos,Neg, k)
RuleSet — LearnRuleSet(Pos,Neg)
For k times
RuleSet — OptimizeRuleSet(RuleSet,Pos,Neg)
LearnRuleSet(Pos,Neg)
RuleSet — ()
DL «— DesclLen(RuleSet,Pos,Neg)
Repeat
Rule —| LearnRule(Pos,Negq) |
Add Rule to RuleSet
DL" «— DesclLen(RuleSet,Pos,Neg)
If DL'>DL+64
PruneRuleSet(RuleSet,Pos,Neg)
Return RuleSet
If DL'<DL DL — DL’
Delete instances covered from Pos and Neg
Until Pos =
Return RuleSet

29

30

PruneRuleSet(RuleSet,Pos,Neg)

For each Rule € RuleSet in reverse order
DL «— DesclLen(RuleSet,Pos,Neg)
DL' +— DesclLen(RuleSet-Rule,Pos,Neg)
IF DL'<DL Delete Rule from RuleSet
Return RuleSet

OptimizeRuleSet(RuleSet,Pos,Neqg)

For each Rule € RuleSet

DLO «— DescLen(RuleSet,Pos,Neqg)

DL1 «— DescLen(RuleSet-Rule+
ReplaceRule(RuleSet,Pos,Neg),Pos,Neg)
DL2 «— DescLen(RuleSet-Rule+
ReviseRule[RuleSet,Rule,Pos,Neg),Pos,Neg)

If DL1=min(DLO,DL1,DL2)

Delete Rule from RuleSet and
add ReplaceRule(RuleSet,Pos,Neg)
Else If DL2=min(DL0O,DL1,DL?2)
Delete Rule from RuleSet and
add ReviseRule(RuleSet,Rule,Pos,Neg)
Return RuleSet

Multivariate Trees
T
- f (X):w! x+w >0

Multivariate Trees

f (X): anx +W_, > 0 defines a hyperplane with
arbitrary orientation.

|_eaf nodes define polyhedra in the input space.

In a univariate node there are d possible
orientations (w,,) and N, — 1 possible thresholds
(—w,,0), making an exhaustive search possible.

/Nm
9) possible
\

hyperplanes and an exhaustive search is no longer

In a multivariate node, there are 2°

practical.

Multivariate Trees

L Inear multivariate nodes are more flexible.

Nonlinear multivariate nodes are even more

flexible. f(X):X"W_X+wW X+WwW_, >0

Multilayer perceptron has been proposed.
Sphere node s also possible.

f,(X):[x—c,|<a,

where ¢, IS the center and a, Is the radius.

