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Nonparametric Estimation

- Parametric (single global model), semiparametric
(small number of local models)

- Nonparametric: Similar inputs have similar outputs

- Functions (pdf, discriminant, regression) change
smoothly

- Keep the training data;*“let the data speak for itself”

o Given X, find a small number of closest training
Instances and interpolate from these

o lazy/memory-based/case-based/instance-based
learning



Density Estimation

Given the training set X={x'}, drawn iid from p(x)
The nonparametric estimator for the cumulative
distribution function, F(x), at point X Is:
#{xt < x}

N
The nonparametric estimate for the density function,

which is the derivative of the cumulative distribution,
can be calculated as (h is the length of the interval):

1 #{xt < x+h}—#{xt < x}
PO)=5 N

F(x)=




Histogram Estimator

Divide data into bins of size h

Histogram:

) #{x" in the same bin as x|
P(x)= Nh

Naive estimator:
#{x— h/2 < x' < x+ h/2}

Nh

b= 3w ] wiw)-]

or
1 if \u\ <1/2
0 otherwise
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Kernel Estimator
S
- Kernel function, e.g., Gaussian kernel:

1

O

o Kernel estimator (Parzen windows)
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k-Nearest Neighbor Estimator

Instead of fixing bin width h and counting the
number of Instances, fix the instances (neighbors) k
and check bin width k

X)=
() 2Nd, (x)
d.(x), distance to kth closest instance to x

d,(x)<d,(x)<---<d, (x)are the distances
arranged In ascending order, from x to the points In
the sample.

To get a smoother estimate; kernel function’s effect

dec. with inc. distance  p(x)= Ndl(x) i K(;I(_(;(;j
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Multivariate Data

Given the training set X={x'}, ; Kernel density
estimator 1
j | de K (x)dx =1

N X_Xt
D(X) = K

Multivariate Gaussian kernel

1Y ulf
spheric K(U)Z(Ej exp _@
ellipsoid K (u)=——, mexp[_guTslu}

(27)"°[S 2



Nonparametric Classification

Estimate p(x|C,) and use Bayes’ rule
Kernel estimator

. 1 X — X . N,
p(iC) = s KX i p(e)-

0,(x)= (K )F(C) s 3K [ X

kK-NN estimator

K ﬁ(X|Ci)F3(Ci) K

P(C,|x)=

p(X|Ci):

Nini(x)' p(x) k

k=1 — Nearest Neighbor classifier



Condensed Nearest Neighbor

Time/space complexity of k-NN is O(N).

Find a subset Z of X that 1s small and Is accurate In
classifying X (Hart, 1968).

E'(Z)X)=E(X|2)+4|Z]

v  E(X|Z) is the error on X
storing Z

v' | ZI is the cardinality of Z.

v' The 2™ term penalizes

complexity.



Condensed Nearest Neighbor

Incremental algorithm: Add instance If needed

Z — 10
Repeat

For all @ € X (in random order)
Find @’ € Z s.t. [|[& — 2'|| = mingjc z || — x|
If class(ax)#class(x’) add « to Z
Until Z does not change




“Distance-based Classification

Find a distance function D(x",x®) such that

If X"and x5 belong to the same class, distance Is
small and if they belong to different classes,
distance Is large.

Assume a parametric model and learn its
parameters using data, e.g.,

Dix, x'IM) = (x — x")"M(x — x")



“ Learning a Distance Function

The three-way relationship between distances,
dimensionality reduction, and feature extraction.

M=LTL is dxd and L is kxd

D(x,x'M) = (x—xH'M(x —x") =(x - xHTLTL(x — x")
= (Lix=x"NHT(L(x - x") = (Lx = Lx") T (Lx — Lx"))
- (z-zHW1(z-z") = ||z - z"|?

Similarity-based representation using similarity
scores

Large-margin nearest neighbor (chapter 13)
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v Euclidean distance (circle) is not suitable,
v Mahalanobis distance using an M (ellipse) is suitable.
v’ After the data is projected along L, Euclidean distance

can be used.



“Qutlier Detection

Find outlier/novelty points

Not a two-class problem because outliers are very
few, of many types, and seldom labeled

Instead, one-class classification problem: Find
Instances that have low probability

In nonparametric case: Find instances far away
from other instances



“Local Outlier Factor

T
di(X)

LOF(x) = 2sen (x) dk($) /N (x)]

(a)




Nonparametric Regression

Given the training set X={x!, ri}where r'e R, we
assume r‘=g(x')+& ,ourapproach s to find
the neighborhood of x and average the r values in
the neighborhood to calculate §(x).

The nonparametric regression estimator Is also
called a smoother and the estimate Is called a
smooth.

Regressogram; we define an origin and a bin width
and average the r values in the bin as in the
histogram —




where

1 ifx' is in the same bin with x

0 otherwise

Having discontinuities at bin boundaries is disturbing
as Is the need to fix an origin.

Running Mean Smoother: we define a bin
symmetric around x and average in there

b(x,xt):<

1 if |u|<1/2
0 otherwise

e




4r Regressogram smoother: 1=6

-2 | | | | | | ] |

> Regressograms for various bin lengths. ‘x” denote data points.
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Running mean smoother: h=6
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Running Mean/Kernel Smoother

Running mean smoother Kernel smoother

zylw(x—hx‘j " 6 (x)= ZtNlK(X_hXt] :

@(X) - t N X— X'
ZtNlW(X_hX ] Z”KL h ]
where where K() is Gaussian
W(u):{l 1 <12 the k-nn smoother
0 otherwise

Running line smoother
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Running line smooth: h=6

Running line smooth for various bin lengths.



Kernel smooth: h=1
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26 Kernel smooth for various bin lengths.
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Regressograms with linear fits in bins for various bin lengths.

Regressogram linear smoother: h=6
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How to Choose k or h ?

When k or h is small, single instances matter; bias

Is small, variance is large (undersmoothing): High
complexity

As Kk or h increases, we average over more
Instances and variance decreases but bias increases
(oversmoothing): Low complexity

Cross-validation 1s used to fine tune k or h.

2 b A
Z [rt - é(xt)] T AJ [g”(X)]ZdX Smoothing

” )
Error Curvature Splines



Kemel estimator for two classes: h=1
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Kernel estimate for various bin lengths for a two-class problem. Plotted

are the conditional densities, p(x|C; ). It seems that the top one over-

smooths and the bottom undersmooths, but whichever is the best will
29 depend on where the validation data points are.



