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Nonparametric Estimation
2

 Parametric (single global model), semiparametric 
(small number of local models)

 Nonparametric: Similar inputs have similar outputs

 Functions (pdf, discriminant, regression) change 
smoothly

 Keep the training data;“let the data speak for itself”

 Given x, find a small number of closest training 
instances and interpolate from these

 lazy/memory-based/case-based/instance-based 
learning



Density Estimation
3

 Given the training set X={xt}t drawn iid from p(x)

 The nonparametric estimator for the cumulative 

distribution function, F(x), at point x is:

 The nonparametric estimate for the density function, 

which is the derivative of the cumulative distribution, 

can be calculated as (h is the length of the interval):
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Histogram Estimator
4

 Divide data into bins of size h

 Histogram:

 Naive estimator:

or

 
 #  in the same bin as 

ˆ  

tx x
p x

Nh


 
 # 2 2

ˆ  

tx h x x h
p x

Nh

   


   
1

1 if 1/ 21
ˆ ,       

0 otherwise

tN

t

ux x
p x w w u

Nh h

  
   

  




5

Histogram: h=2

Histogram: h=0.5

Histogram: h=1
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Naïve Estimator: h=2

Naïve Estimator: h=1

Naïve Estimator: h=0.5



Kernel Estimator
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 Kernel function, e.g., Gaussian kernel:

 Kernel estimator (Parzen windows)
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Kernel Estimator: h=1

Kernel Estimator: h=0.5

Kernel Estimator: h=0.25



k-Nearest Neighbor Estimator
9

 Instead of fixing bin width h and counting the 

number of instances, fix the instances (neighbors) k 

and check bin width

dk(x), distance to kth closest instance to x

 are the distances 

arranged in ascending order, from x to the points in 

the sample.

 To get a smoother estimate; kernel function’s effect

dec. with inc. distance

 
 

ˆ  
2 k

k
p x

Nd x


     1 2 Nd x d x d x  

 
1

1
ˆ  

( ) ( )

tN

tk k

x x
p x K

Nd x d x

 
  

 




10

K-NN Estimator: k=5

K-NN Estimator: k=3

K-NN Estimator: k=1



 Given the training set X={xt}t ; Kernel density 
estimator

Multivariate Gaussian kernel

spheric

ellipsoid

Multivariate Data
11
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 Estimate p(x|Ci) and use Bayes’ rule

 Kernel estimator

 k-NN estimator

 k=1 → Nearest Neighbor classifier

Nonparametric Classification
12
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Condensed Nearest Neighbor
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 Time/space complexity of k-NN is O(N).

 Find a subset Z of X that is small and is accurate in 

classifying X (Hart, 1968).

 E(X|Z) is the error on X
storing Z

 |Z| is the cardinality of Z.
 The 2nd term penalizes 

complexity.



Condensed Nearest Neighbor
14

 Incremental algorithm: Add instance if needed



* Distance-based Classification
15

 Find a distance function D(xr,xs) such that 

if xr and xs belong to the same class, distance is 

small and if they belong to different classes, 

distance is large.

 Assume a parametric model and learn its 

parameters using data, e.g.,



* Learning a Distance Function
16

 The three-way relationship between distances, 
dimensionality reduction, and feature extraction.

 M=LTL is d×d and L is k×d

 Similarity-based representation using similarity 
scores

 Large-margin nearest neighbor (chapter 13)
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 Euclidean distance (circle) is not suitable, 

 Mahalanobis distance using an M (ellipse) is suitable.

 After the data is projected along L, Euclidean distance 

can be used.



* Outlier Detection
18

 Find outlier/novelty points

 Not a two-class problem because outliers are very 

few, of many types, and seldom labeled

 Instead, one-class classification problem: Find 

instances that have low probability

 In nonparametric case: Find instances far away 

from other instances



* Local Outlier Factor
19



Nonparametric Regression
20

 Given the training set X={xt , rt}where rt R, we 

assume                                , our approach is to find 

the neighborhood of x and average the r values in 

the neighborhood to calculate     

 The nonparametric regression estimator is also 

called a smoother and the estimate is called a 

smooth. 

 Regressogram; we define an origin and a bin width 

and average the r values in the bin as in the 

histogram →
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 Having discontinuities at bin boundaries is disturbing 

as is the need to fix an origin.

 Running Mean Smoother: we define a bin 

symmetric around x and average in there
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22 Regressograms for various bin lengths. ‘×’ denote data points.

Regressogram smoother: h=6

h=3

h=1



23 Running mean smooth for various bin lengths.

h=3

h=1



Running Mean/Kernel Smoother

 Running mean smoother  Kernel smoother

where K( ) is Gaussian

 the k-nn smoother
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Running line smoother



25 Running line smooth for various bin lengths.

h=1

h=3



26 Kernel smooth for various bin lengths.

h=0.5

h=0.25
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Regressograms with linear fits in bins for various bin lengths.

h=3

h=1



How to Choose k or h ?
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 When k or h is small, single instances matter; bias 

is small, variance is large (undersmoothing): High 

complexity

 As k or h increases, we average over more 

instances and variance decreases but bias increases 

(oversmoothing): Low complexity

 Cross-validation is used to fine tune k or h.

Smoothing
SplinesError Curvature
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Kernel estimate for various bin lengths for a two-class problem. Plotted 
are the conditional densities, p(x|Ci ). It seems that the top one over-
smooths and the bottom undersmooths, but whichever is the best will 
depend on where the validation data points are.

h=0.25

h=0.5


