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Semiparametric Density Estimation
2

 Parametric: Assume a single model for p (x | Ci) 

(Chapters 4 and 5).

 Semiparametric: p (x|Ci) is a mixture of densities

Multiple possible explanations/prototypes:

Different handwriting styles, accents in speech.

 Nonparametric: No model; data speaks for itself 

(Chapter 8).



Mixture Densities
3

where Gi the components/groups/clusters, 

P (Gi) mixture proportions (priors),

p (x |Gi) component densities

Gaussian mixture where p(x|Gi) ~ N (μi , ∑i) 
parameters Φ = {P (Gi ), μi , ∑i }

k
i=1 

unlabeled sample X={xt}t (unsupervised learning).

Example (2-D Dataset):

p(x|G1) ~ N( (2,  3) , 1), P(G1)=0.5

p(x|G2) ~ N( (-4, 1) , 2), P(G2)=0.4

p(x|G3) ~ N( (0, -9) , 3), P(G3)=0.1
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Classes vs. Clusters 

 Supervised: X = {xt,rt }t 

 Classes Ci i=1,...,K

where p(x|Ci) ~ N(μi ,∑i ) 

 Φ = {P (Ci ), μi , ∑i }
K

i=1

 Unsupervised : X = { xt }t 

 Clusters Gi , i=1,...,k

where p(x|Gi) ~ N ( μi , ∑i ) 

 Φ = {P ( Gi ), μi , ∑i }
k
i=1

Labels rt
i ?
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Motivation: Why Clustering?
5

Problem: Identify (a small number of) groups of 

similar objects in a given (large) set of object.

Goals:

 Find representatives for homogeneous groups 

Data Compression 

 Find “natural” clusters and describe their properties 

”natural” Data Types

 Find suitable and useful grouping ”useful” Data 

Classes

 Find unusual data object Outlier Detection



 Find k reference vectors (prototypes/codebook 

vectors/codewords) which best represent data

 Reference vectors, mj, j =1,...,k

 Use nearest (most similar) reference:

 Reconstruction error

k-Means Clustering
6
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Encoding/Decoding
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mi are also called codebook vectors or code words.



k-means Clustering
8
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The K-Means Clustering Method

 Example
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Methods for Initialization
11

 Take randomly selected k instances as the initial 

mi.

 The mean of all data can be calculated and small 

random vectors may be added to the mean to get 

the k initial mi.

 We can calculate the principal component, divide 

its range into k equal intervals, partitioning the data 

into k groups, and then take the means of these 

groups as the initial centers.



Expectation-Maximization (EM)
12

 Log likelihood with a mixture model

 Φ includes the priors P(Gi) and also the sufficient 
statistics of the component densities p(xt|Gi).

 Assume hidden variables z, which when known, make 
optimization much simpler.

 Complete likelihood, Lc(Φ |X,Z), in terms of x and z.

 Incomplete likelihood, L(Φ |X), in terms of x.
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E- and M-steps
13

Iterate the two steps

1. E-step: Estimate z given X and current Φ

2. M-step: Find new Φ given z, X, and old Φ. 

An increase in Q increases incomplete likelihood 
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 zt
i = 1 if xt belongs to Gi, 0 otherwise (labels r ti of 

supervised learning); assume p(x|Gi)~N(μi,∑i)

 E-step: 

 M-step: 

EM in Gaussian Mixtures
14
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Use estimated 

labels in place 

of unknown 

labels

Remarks: hi
t plays the role of bi

t in K-Means. hi
t acts as an estimator for the unknown labels zi

t.
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P(G1|x)=h1=0.5



Commonalities between K-Means and EM
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1. They start with random clusters and rely on a 2 step-

approach to minimize the objective function using the 

EM-procedure. 

2. Use the same optimization procedure of  an objective 

function f(a1,…,am,b1,…,,bk); we basically, maximize the a-

values (keeping the b-values fixed) and then the b-values 

(keeping the a-values fixed) until some convergence is 

reached. Consequently, both algorithms 

 only find a local minimum of  the objective function

 are sensitive to initialization 

3. Both assume the number of  clusters k is known



Differences between k-Means and EM

17

1. k-means is distanced-based and relies on 1-NN queries 

to form clusters. EM is density based/ probabilistic; EM 

usually works with multivariate Gaussians but can be 

generalized to work with other probability distributions.

2. k-means minimizes the squared distance of  on object to 

its cluster prototype (usually the centroid). EM 

maximizes the log-likelihood of  a sample given a model 

(p(X|)); models are assumed to be mixtures of  k

Gaussians and their priors.

3. k-means is a hard clustering, EM is a soft clustering 

algorithm: hi
t  [0,1]



Differences between K-Means and EM

18

4. k-means cluster models are just k centroids; EM models are k

“priors, means+covariance matrices”. 

5. EM directly deals with dependencies between attributes in its 

density estimation approach: the degree to which an object x

belongs to a cluster c depends on the product of  c’s prior with 

the Mahalanobis distance between x and the c’s mean; 

therefore, EM clusters do not depend on units of  

measurements and orientation of  attributes in space.

6. The distance metrics can be viewed as an input parameter 

when using k-means, and generalizations of  k-means have 

been proposed which use different distance functions. EM 

implicitly relies on the Mahalanobis distance function which is 

part of  its density estimation approach. 



Mixtures of Latent Variable Models
19

Regularize clusters

1. Assume shared/diagonal covariance matrices

2. Use PCA/FA to decrease dimensionality: Mixtures 
of PCA/FA

3. where Vi and Ψi are the factor loadings and 
specific variances of cluster Gi.

4. Can use EM to learn Vi and Ψi instead of Si. 
(Ghahramani and Hinton, 1997; Tipping and 
Bishop, 1999)
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Supervised Learning After Clustering
20

 Dimensionality reduction methods find correlations 
between features and group features

 Clustering methods find similarities between 
instances and group instances

 Allows knowledge extraction through

number of clusters,

prior probabilities, 

cluster parameters, i.e., center, range of features.

Example: CRM, customer segmentation



Clustering as Preprocessing
21

 Estimated group labels hj (soft) or bj (hard) may be 

seen as the dimensions of a new k dimensional 

space, where we can then learn our discriminant or 

regressor.

 Local representation (only one bj is 1, all others are 

0; only few hj are nonzero) vs

Distributed representation (After PCA; all zj are 

nonzero).



Mixture of Mixtures
22

 In classification, the input comes from a mixture of 

classes (supervised). 

 If each class is also a mixture, e.g., of Gaussians, 

(unsupervised), we have a mixture of mixtures:

 where ki is the number of components making up 

p(x|Ci) and Gij is the component j of class i.
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Spectral Clustering
23

 Cluster using predefined pairwise similarities Brs

instead of using Euclidean or Mahalanobis distance

 Can be used even if instances not vectorially 

represented

 Steps:

I. Use Laplacian Eigenmaps (chapter 6) to map to a 

new z space using Brs

II. Use k-means in this new z space for clustering



 Cluster based on similarities/distances

 Distance measure between instances xr and xs

Minkowski (Lp) (Euclidean for p = 2)

City-block distance

Hierarchical Clustering
24
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 Start with N groups each with one instance and 

merge two closest groups at each iteration

 Distance between two groups Gi and Gj:

 Single-link: 

 Complete-link:

 Average-link, centroid

Agglomerative Clustering
25
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Example: Single-Link Clustering
26

Dendrogram



Choosing k
27

 Defined by the application, e.g., image quantization

 Plot data (after PCA) and check for clusters

 Incremental (leader-cluster) algorithm: Add one at 

a time until “elbow” (reconstruction error/log 

likelihood/intergroup distances)

 Manually check for meaning

 Run with multiple k-values and compare the results


