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Why Reduce Dimensionality?

Reduces time complexity: Less computation
Reduces space complexity: Fewer parameters
Saves the cost of observing the feature

Simpler models are more robust on small
datasets

More interpretable; simpler explanation

Data visualization (structure, groups, outliers,
etc) If plotted in 2 or 3 dimensions



Feature Selection vs Extraction

- Feature selection: Choosing k < d important features,
Ignoring the remaining d — Kk

Subset selection algorithms

o Feature extraction: Project the original x; , 1 =1,...,d
dimensions to new k < d dimensions, z;, J =1,...,k
Principal components analysis (PCA), linear
discriminant analysis (LDA), factor analysis (FA)

- Feature construction: Create new features based on old
features: f=(...) with f usually being a non-linear
function—>support vector machines,...



Subset Selection

a4 b
- There are 29 subsets of d features

o Forward search: Add the best feature at each step

o F 1s a feature set of input dimensions; E(F) denotes
the error incurred on the validation sample when only
the inputs in F are used.
o Set of features F initially @.

o At each iteration, find the best new feature
j=argmin, E (F U X;)
AddxtoF IfE(FuUXx ) <E(F)
2 This algorithm is also known as the wrapper approach,

where the process of feature extraction is thought to
“wrap” around the learner it uses as a subroutine.




Iris data (4 inputs and 3 classes): Single feature
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Iris data: Add one more feature to F4
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Subset Selection

7
o Hill-climbing O(d 2) algorithm
1 Backward search: Start with all features and remove

one at a time, If

nossible.

o Floating search (Add k, remove I)

o In floating searc

N methods, the number of added

features and removed features can also change at each

step.

o In sequential backward selection, we start with F
containing all features and do a similar process except
that we remove one attribute from F as opposed to

adding to it, and
least error

we remove the one that causes the

j =argmin, E (F — X
remove x; from F if E(F — x) < E(F)



Principal Components Analysis
s 4

o Find a low-dimensional space such that when X is
projected there, information loss is minimized.

o The projection of x on the direction of w is: z = w'x
o Find w such that Var(z) i1s maximized
Var(z) = Var(w'™x) = E[(W'X — wTu)?]
= E[(W'x —w'g)(W'x —w'u)]
= E[W'(X — ) (X —u)"W]  «—Note: ATB=BTA
=W E[(X —p)(X —) ]w =w' Fw
where Var(X)= E[(X —p)(X —u)'] =



Maximize Var(z) subject to ||w||=1

Mmax W, Zw, — oc(wIW1 —1)
W.

1
> w,; = aw, that Is, w, IS an eigenvector of >’
Choose the one with the largest eigenvalue for Var(z) to be
max; Because we want to maximize W, ZW, =aW, W, =«

Second principal component: Max Var(z,), s.t.,
|w,||=1 and orthogonal to w,

max w, W, —a (W, w, —1) - B(wyw, —0)

W2
= 23W, —2aw, — fw, = 0= 2w; W, — 2aW, W, — Sw; W, =0
Wi W, =0,w; W, =W, W, = AW, W, =0= f=0=

> W, = a W, that is, w, is another eigenvector of > and so on.



What PCA does

z=WT(x -m)

where the columns of W are the eigenvectors of >
and m is sample mean

Centers the data at the origin and rotates the axes.

o

=

A

A

zZ, N




Another Derivation

Find a matrix W such that when we have z = W'x we
will get Cov(z) = D where D is any diagonal matrix;

We form a (d xd) matrix C whose ith column is the
normalized eigenvector c;of S, then C'C =1 and
S=SCC'=5(c,, Cy, ..., Cq)CT=(Scy, SC,, ..., Scy) CT
= (A,C4, A,Cy, . . ., 44C)CT= A,C4C T+ - -+A L C4" =
CDC'" where D is a diagonal matrix whose diagonal
elements are the eigenvalues, 4, . . ., 44

This is called the spectral decomposition of S.

C'SC =D; Cov(z) = W'SW then W = C.



How to choose k ?
12 b

- Proportion of Variance (PoV) explained

It dg+et Ay
A+A 4t A+ A

when A, are sorted In descending order
o Typically, stop at PoVV>0.9
o Scree graph plots of PoV vs k, stop at “elbow”
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Eigenvalues

Prop of var
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(a) Scree graph for Optdigits

- Scree graph Is the plot of variance
.\ ... explained as a function of the number
~ of eigenvectors kept.
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Second Eigenvector
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PCA numerical example

Consider a set of 2D points P, = (x,y.)

Subtract the mean from each of the data dimensions. All the x values have X subtracted and y
values have y_subtracted from them. This produces a data set whose mean is zero.
Subtracting the mean makes variance and covariance calculation easier by simplifying their
equations. The variance and co-variance values are not affected by the mean value.

original data zero-mean data

X 1y X 1Yy
25(2.4 69| .49
0.5(0.7 -1.31]-1.21
2.212.9 .39 | .99
1.9(2.2 .09 | .29
3.1(3.0 1.29| 1.09
23127 49 | .79
2 |16 19 |-.31
1 (11 -.81 |-.81
15|16 -.31 |-.31
1.1'0.9 -71 '-1.01

and calculate the covariance matrix

C= 616555556 .615444444
B .615444444 716555556

since the non-diagonal elements in this covariance matrix are positive, we should expect that
both the x and y variable increase together.



3.
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Calculate the eigenvalues and eigenvectors of the covariance matrix

eigenvalues =

eigenvectors =

.0490833989
1.28402771

-.735178656
677873399

-,

Det (C—A) =0

Det (C-Al)x=0

-.677873399
-.735178656

Eigenvectors are plotted as diagonal dotted lines on the plot.

— they are perpendicular to each other.

— one of the eigenvectors is like a line of best fit.

— the second eigenvector gives the less important, pattern in the data:
all the points follow the main line, but are off by some amount.
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To reduce dimensionality it must be formed a feature vector.

The eigenvector with the highest eigenvalue is the principle component of the data set.
Once eigenvectors are found from the covariance matrix, they must be ordered by
eigenvalue, from the highest to the lowest. This gives the components in order of significance.

The components of lesser significance can be ignored. If the eigenvalues are small, only little is
lost.

Feature Vector = (e; e, e5... e,)
we can either form a feature vector with both of the eigenvectors:

-.677873399 : -.735178656
n735178656§ .677873399

or, choose to leave out the less significant component and only have a single column:
-.677873399
-.735178656
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5.

Considering both eigenvectors, the new data is obtained as:

X y
-.827970186 -.175115307
1.77758033 142857227
-.992197494 .384374989
-.274210416 130417207
-1.67580142 -.209498461
-.912949103 175282444
.0981094375 -.349824698
1.14457216 0464172582
438046137 0177646297
1.22382056 -.162675287

15
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6. If we reduce the dimensionality, when reconstructing the data those dimensions we chose to
discard are lost. If the y component is discarded and only the x dimension is retained...

X

-.827970186
1.77758033 '
-.992197494 &
-.274210416 ¥
-1.67580142 .
-.912949103 L #

.0991094375 +
1.14457216 Y I S

438046137
1.22382056 2
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Given a training set of faces represented as N?x1 vectors, PCA extracts the eigenvectors of the
matrix A built from this set of vectors. Each eigenvector has the same dimensionality as the
original images, and can be regarded as an image.

They are referred to as eigenfaces. Eigenfaces can be considered a set of "standardized face
ingredients", derived from statistical analysis of many pictures of faces. They are the directions in
which the images differ from the mean image.




* The eigenvectors (eigenfaces) with largest associated eigenvalue are kept.

* These eigenfaces can now be used to represent both existing and new faces by projecting a
new (mean-subtracted) image on the eigenfaces and recording how that new face differs
from the mean face.

x> ((x—X%X) vy, x—X) - vg,..., (XxX—X) -VvK)
ail a2 aK

X%-)T+a1V1+a2V2+...+a,KVK\

Computation of the covariance matrix is simplified (suppose 300 images of 100x100
pixels, that yelds a 10000x10000 covariance matrix. Eigenvalues are instead extracted from
300 x 300 covariance matrix).

In practical applications, most faces can be identified using a projection on between 100 and
150 eigenfaces, so that most of the eigenvectors can be discarded.
21



Feature Embedding (FE)

When X Is the Nxd data matrix,
XTX is the dxd matrix (cov. of features, if mean-centered)
XXT is the NxN matrix (pairwise similarities of instances)

PCA uses the eigenvectors of XX which are d-dim and can be
used for projection

FE uses the eigenvectors of XX"which are N-dim and which
give directly the coordinates after projection

Sometimes, we can define pairwise similarities (or distances)
between instances, then we can use feature embedding without
needing to represent instances as vectors.

Xw; must be the eigenvectors of XXTwith the same eigenvalues



Factor Analysis

23
o Find a small number of factors z, which when
combined generate X:

X; — M = VjrZy t VipZy + .+ Vi Z, T &

where z;, ] =1,...,k are the latent factors with
E[ z;]=0, Var(z)=1, Cov(z; , )=0,1#],
g; are the noise sources
E[ € ]= 0, Var(g; )= y;, Cov(g;, &) =0, 1 #J,
Cov(g;, ZJ-) =0,
and v;; are the factor loadings



PCAvs FA

o PCA From x to z z=WT(x - )
o FA From z to X X—U=Vz+eg

X X, X, z, z, z,
X
W Vv

factors
Z

new' variables
variables X
Z z, Z, z, X, X, X,
PCA FA



Factor Analysis

- In FA, factors Z; are stretched, rotated and translated
to generate X

A A

by <

R : :




2. =Cov(x) = Cov(Vz + €)
= Cov(Vz) + Cov(e€)
= VCov(z)VI +¥
= VVli+¥ a diagonal matrix
The estimatorof L=S = VV! + ¥

V= Covariances or factor loadings,
Y= \Variances V is not Unique.
S=(vD) (VD! = VvTT!V! = viv! = yVv!

If T Is an orthogonal matrix, the distance to the
origin does not change. If z = T, then

z'z = (Tx)' (Tx) =x'T!'Tx = x'x



Dimensionality Reduction

Finding the factor scores
loadings w;; such that
d
Zj = ZWﬁX,‘ -|-€j,j - 1,...,](
=1

zl=Wixt+¢Vt=1,...,N

, Z;, from x; . Finding the

(zO)! = (xHIW+el, vVt =1,..., N

Z=XW+E W= (X'X)"1x!z

= Sy

-1
_— (N—1)(XTX)1XTZ - (XTX) X7

N -1 N -1 N -1



7Z =XW=XS"1v

There are two uses of factor analysis:

It can be used for knowledge extraction when we find
the loadings and try to express the variables using
fewer factors.

It can also be used for dimensionality reduction
when k <d.

For dimensionality reduction, FA offers no advantage
over PCA except the interpretability of factors
allowing the identification of common causes, a
simple explanation, and knowledge extraction.



Singular Value Decomposition and
Matrix Factorization

Singular value decomposition: X = VAWT

V is NxN
W Is dxd

and contains the eigenvectors of XX
and contains the eigenvectors of XX

and A Is Nxd and contains singular values on its first

k= min(N

, d) diagonal.

XXT=(VAWT) (VAWT)T= VAWTWATVT=VVEVT
XTX=(VAWT)T(VAWT)= WATVTVAWT=WDWT
Where E=AAT, D= ATA. They are of different sizes but

are both square and contain a;%,i = 1,...,k on their
diagonal and zero elsewhere.

X=u,a,v,"+...+u,av," where k is the rank of X.



Matrix Factorization

Matrix factorization: X=FG
F is Nxk and G i1s kxd

i d k i d

X F

N

k
X;i = F/Gi = > F;Gji Latent semantic indexing
j=1



G defines factors in terms of the original attributes
and F defines data instances In terms of these
factors.

Exp: X Is the consumer data. We have N
customers and we sell d different products. X,
corresponds to the amount of product i1 customer N
has purchased.

Purchases depend on a number of factors, for
example, household size and composition, income
level, taste, and so on.



Multidimensional Scaling

Given pairwise distances between N points,

dii, 1,) =1, ..., N
place on a low-dim map s.t. distances are preserved (by
feature embedding)

z=9(x|0)
where z € RK, x € RY, and g (x | @) is the mapping function
from d to k dimensions defined up to a set of parameters 6.
Classical MDS - linear transformationz=g (X | W)
=WTx
Find @ that min Sammon stress (normalized error In
mapping) and is defined as:



(zr—zs —|IX" =x° )2
E(61X) =2, —
rs X —X
lstxol-stewife )
rs X —X

For two points r and s

Any regression method can be used to estimate 6
to minimize the stress on the training data X.



Map of Europe by MDS
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Linear Discriminant Analysis

27

-

Find a low-dimensional
space such that when X
IS projected, classes are
well-separated. L

Find w that maximizes

s

. 1
) /
3
."tj,

m

J(w)= s 2 class case




Between-class scatter:
(m —m,)’ =(WTm1—WTm2)2
=w" (m,-m,)(m,-m,)" w
=w'S,w where S, =(m,-m,)(m,-m,)’

Within-class scatter:
st=> (w'x - ml)zrt
= W' (X' —m,)(x' - ml)Twrt =w'S,w
where S, =" (X' —m, )(x' —ml)T r

s’+s.=w'S,w where S, =S, +S,

36



Fisher’s Linear Discriminant

Find w that max

J(w)

w=c-S, (m,—m,)

_ WTSBW _ ‘WT (ml _mz)‘z

w'S,w w'S,w

LDA soln:

Parametric soln:

W = 2"_1(111 _uz)
when p(X|C;)~ N(p;,X)



K > 2 Classes

Within-class scatter:

S, =iZK1:si S, => i (x —m;)(x —mi)T

Between-class scatter:

K K
SB:ZNi(mi—m)(mi—m)T mz%Zmi
=1 i=1
Find W that max J(W)- WS, W|
(WS, W

The largest eigenvectors of S, *Sg. maximum rank of K-1
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.....................................................................................................




PCAvs LDA

1 1
At
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PCA projection LDA projection



Canonical Correlation Analysis

X={x4y'}, ; two sets of variables x € R%and y € R®

We want to find two projections w and v such that
when X Is projected along w and y Is projected
along v, the correlation I1s maximized:

Coviwlx,vly)

p = Corr(wlx,vly)=— !
VVar(wTx),/Var(vTy)

wlCov(x,y)v wlS,v

VwlVar(x)wyvIVar(y)v — yw!Suw,vIS, v




Canonical Correlation Analysis

Maximize w'S, v subject to w'S,,w=1 and v'S,,v=1.
Writing these as Lagrangian terms .

w should be an eigenvector of S, 1SXySyy 'S, and
similarly v should be an eigenvector of

Sy SyxSxx "Sxy

Choose k as the dimensionality then we get the
canonical variates by projecting the training

Instances along them

-----



Canonical Correlation Analysis

X and y may be two different views or modalities;
e.g., Image and word tags, and CCA does a joint

mapping

X Y v, Y, v,
N 77N 4 N /S FH\1 7N
_/ N N NG

‘f
™ e 7N
| ' J \ |
N/ \_ N N/
a, a, b ; bk



(Isometric feature mapping) Isomap
Sy

- Geodesic distance Is the distance along the
manifold that the data lies In, as opposed to the
Euclidean distance in the input space

T (reodesic
' . distance

*a
L

R“u
Luclidean .
distance "y



Isomap

Instances r and s are connected in the graph if
|IX"-x8||<e or If x®1s one of the k neighbors of X'

The edge length is [|x"-x3||.

For two nodes r and s not connected, the distance Is
equal to the shortest path between them.

Once the NxN distance matrix 1s formed, use MDS to
find a lower-dimensional mapping.

This will have the effect of placing r and s that are far
apart in the geodesic space also far apart in the new
k-dim space even Iif they are close in terms of
Euclidean distance in the original d-dim space.
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Optdigits after Isomap (with neighborhood graph).
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Matlab source from http://web.mit.edu/cocosci/isomap /isomap.html



Locally Linear Embedding

LLE recovers global nonlinear structure from
locally linear fits.

Given x" find its neighbors X°y;

Find W that minimize (using least squares
subjectto W, =0,vrand W, =1.)

EY(W|X)=> [IX"= > WX,
Find the new coordinates z"that minimize

2
r S
2= ) Wiz,
S

2

E*(z|W)=)"
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E'(z|W)=) M, (z) z°

Mrs — 5rs _Wrs _Wsr + ZWirWis

X space

E[z]=0
Cov(z) =1

k.

z space



LLE on Optdigits

Matlab source from http://www.cs.toronto.edu/~roweis/lle /code.html



Laplacian Eigenmaps

Let r and s be two Instances and B, Is their similarity,
we want to find z"and z° that

min > ||z" — z*||*B,
F,S

B,. can be defined in terms of similarity in an original
space: O If x"and xS are too far, otherwise

5 . |xr’ . XSHE
., = E‘ —
" P 20°

Defines a graph Laplacian, and feature embedding
returns z'




Laplacian Eigenmaps on Iris

MDS Laplacian eigenmap
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Spectral clustering (chapter 7)

Iris data reduced to two dimensions using multidimensional
scaling and Laplacian eigenmaps. The latter leads to a more
dense placement of similar instances.



Notes

The forward and backward search procedures we
discussed are local search procedures.

You can use a stochastic procedure like simulated
annealing or genetic algorithms to search more widely
In the search space.

There are also filtering algorithms for feature selection
where heuristic measures are used to calculate the
“relevance” of a feature in a preprocessing stage
without actually using the learner.

Projection methods work with numeric inputs, and
discrete variables should be represented by 0/1 dummy
variables, whereas subset selection can use discrete
Inputs directly.



Notes

The projection methods we discussed are batch
procedures in that they require that the whole sample
be given before the projection directions are found.
Mao and Jain (1995) discuss online procedures.

Laplacian eigenmaps use the idea of feature embedding
such that given pairwise similarities are preserved; the
same Idea Is also used In kernel machines where
pairwise similarities are given by a kernel function.

Matrix decomposition methods are quite popular in
various big data applications because they allow us to
explain a large data matrix using smaller matrices.

One example application Is recommendation systems
where we may have millions of movies and millions of
customers and entries are customer ratings.



Notes

There Is a trade-off between feature extraction and
decision making.

If the feature extractor is good, the task of the classifier
(or regressor) becomes trivial.

If the classifier is good enough, then there is no need
for feature extraction; it does Its automatic feature
selection or combination internally.

There exist algorithms that do some feature selection
internally, though in a limited way. Decision trees (Ch
9) do feature selection while generating the decision
tree, and multilayer perceptrons (Ch 11) do nonlinear
feature extraction in the hidden nodes.



