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Why Reduce Dimensionality?
2

 Reduces time complexity: Less computation

 Reduces space complexity: Fewer parameters

 Saves the cost of observing the feature

 Simpler models are more robust on small 

datasets

 More interpretable; simpler explanation

 Data visualization (structure, groups, outliers, 

etc) if plotted in 2 or 3 dimensions



Feature Selection vs Extraction
3

 Feature selection: Choosing k < d important features, 
ignoring the remaining d – k

Subset selection algorithms

 Feature extraction: Project the original xi , i =1,...,d
dimensions to new k < d dimensions, zj , j =1,...,k

Principal components analysis (PCA), linear 
discriminant analysis (LDA), factor analysis (FA)

 Feature construction: Create new features based on old 
features: f=(…) with f usually being a non-linear 
functionsupport vector machines,…



Subset Selection
4

 There are 2d subsets of d features

 Forward search: Add the best feature at each step

 F is a feature set of input dimensions; E(F) denotes 
the error incurred on the validation sample when only 
the inputs in F are used.
 Set of features F initially Ø.

 At each iteration, find the best new feature

j = argmini E (F  xi )

Add xj to F if E (F  xj ) < E (F ) 

 This algorithm is also known as the wrapper approach, 
where the process of feature extraction is thought to 
“wrap” around the learner it uses as a subroutine.
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Iris data (4 inputs and 3 classes): Single feature

Chosen
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Iris data: Add one more feature to F4

Chosen
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 Hill-climbing O(d 2) algorithm
 Backward search: Start with all features and remove 

one at a time, if possible.
 Floating search (Add k, remove l)
 In floating search methods, the number of added 

features and removed features can also change at each 
step.

 In sequential backward selection, we start with F
containing all features and do a similar process except 
that we remove one attribute from F as opposed to 
adding to it, and we remove the one that causes the 
least error 

j = argmini E (F - xi)

remove xj from F if E(F − xj) < E(F) 

Subset Selection



Principal Components Analysis
8

 Find a low-dimensional space such that when x is 
projected there, information loss is minimized.

 The projection of x on the direction of w is: z = wTx

 Find w such that Var(z) is maximized

Var(z) = Var(wTx) = E[(wTx – wTμ)2] 

= E[(wTx – wTμ)(wTx – wTμ)]

= E[wT(x – μ)(x – μ)Tw] ←Note: ATB=BTA

= wT E[(x – μ)(x –μ)T]w = wT ∑ w

where Var(x)= E[(x – μ)(x –μ)T] = ∑
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 Maximize Var(z) subject to ||w||=1

∑w1 = αw1 that is, w1 is an eigenvector of ∑

Choose the one with the largest eigenvalue for Var(z) to be

max; Because we want to maximize 

 Second principal component: Max Var(z2), s.t., 

||w2||=1 and orthogonal to w1

∑ w2 = α w2 that is, w2 is another eigenvector of ∑ and so on.
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What PCA does
10

z = WT(x – m)

where the columns of W are the eigenvectors of ∑

and m is sample mean

Centers the data at the origin and rotates the axes.



Another Derivation
11

 Find a matrix W such that when we have z = WTx we 

will get Cov(z) = D where D is any diagonal matrix;

 We form a (d ×d) matrix C whose ith column is the 

normalized eigenvector ci of S, then CTC = I and 

 S = SCCT= S(c1, c2, . . . , cd)C
T=(Sc1, Sc2, . . . , Scd) CT 

= (λ1c1, λ2c2, . . . , λdcd)C
T= λ1c1c1

T+· · ·+λdcdcd
T =

CDCT       where D is a diagonal matrix whose diagonal 

elements are the eigenvalues, λ1, . . . , λd.

 This is called the spectral decomposition of S.

 CTSC = D; Cov(z) = WTSW then W = C.



How to choose k ?
12

 Proportion of Variance (PoV) explained

when λi are sorted in descending order 

 Typically, stop at PoV>0.9

 Scree graph plots of PoV vs k, stop at “elbow”

1 2

1 2
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Scree graph is the plot of variance 

explained as a function of the number

of eigenvectors kept.
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Feature Embedding (FE)
22

 When X is the N×d data matrix,

XTX is the d×d matrix (cov. of features, if mean-centered)

XXT is the N×N matrix (pairwise similarities of instances)

 PCA uses the eigenvectors of XTX which are d-dim and can be 

used for projection

 FE uses the eigenvectors of XXT which are N-dim and which 

give directly the coordinates after projection

 Sometimes, we can define pairwise similarities (or distances) 

between instances, then we can use feature embedding without 

needing to represent instances as vectors.

 (XTX)wi = λiwi→ X (XTX)wi = X λiwi → (XXT)Xwi = λiXwi

 Xwi must be the eigenvectors of XXT with the same eigenvalues



Factor Analysis
23

 Find a small number of factors z, which when 
combined generate x:

xi – µi = vi1z1 + vi2z2 + ... + vikzk + εi

where zj, j =1,...,k are the latent factors with 

E[ zj ]=0, Var(zj)=1, Cov(zi ,, zj)=0, i ≠ j , 

εi are the noise sources 

E[ εi ]= 0, Var( εi )= ψi, Cov(εi , εj) =0, i ≠ j, 

Cov(εi , zj) =0 ,

and vij are the factor loadings



PCA vs FA
24

 PCA From x to z z = WT(x – µ)

 FA From z to x x – µ = Vz + ε

x z

z x



Factor Analysis
25

 In FA, factors zj are stretched, rotated and translated 

to generate x
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 If T is an orthogonal matrix, the distance to the 

origin does not change. If z = Tx, then

a diagonal matrix

The estimator of Σ =

V= Covariances or factor loadings,

Ψ= Variances V is not Unique.



Dimensionality Reduction
27

 Finding the factor scores, zj, from xi . Finding the 

loadings wji such that
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 There are two uses of factor analysis: 

 It can be used for knowledge extraction when we find 

the loadings and try to express the variables using 

fewer factors.

 It can also be used for dimensionality reduction 

when   k < d.

 For dimensionality reduction, FA offers no advantage 

over PCA except the interpretability of factors 

allowing the identification of common causes, a 

simple explanation, and knowledge extraction.



Singular Value Decomposition and 

Matrix Factorization
29

 Singular value decomposition: X = VAWT

V is N×N and contains the eigenvectors of XXT

W is d×d and contains the eigenvectors of XTX

and A is N×d and contains singular values on its first 
k= min(N, d) diagonal.

XXT=(VAWT) (VAWT)T= VAWTWATVT=VEVT

XTX=(VAWT)T(VAWT)= WATVTVAWT=WDWT

Where E=AAT, D= ATA. They are of different sizes but 
are both square and contain ai

2 ,i = 1,...,k on their 
diagonal and zero elsewhere.

 X=u1a1v1
T+...+ukakvk

T where k is the rank of X.



Matrix Factorization
30

 Matrix factorization: X=FG

F is N×k and G is k×d

Latent semantic indexing
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 G defines factors in terms of the original attributes 
and F defines data instances in terms of these 
factors.

 Exp:  X is the consumer data. We have N
customers and we sell d different products. Xti

corresponds to the amount of product i customer N
has purchased.

 Purchases depend on a number of factors, for 
example, household size and composition, income 
level, taste, and so on.



Multidimensional Scaling
32

 Given pairwise distances between N points, 

dij, i, j =1, ..., N

place on a low-dim map s.t. distances are preserved (by 
feature embedding)

 z = g (x | θ )

where z ∈ Rk , x ∈ Rd, and g (x | θ ) is the mapping function 
from d to k dimensions defined up to a set of parameters θ.

 Classical MDS - linear transformation z = g (x | W ) 
=WTx

 Find θ that min Sammon stress (normalized error in 
mapping) and is defined as:



33

For two points r and s

 Any regression method can be used  to estimate θ

to minimize the stress on the training data X.
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Map of Europe by MDS
34

Map from CIA – The World Factbook: http://www.cia.gov/

Map of Europe drawn by MDS. Pairwise road 
travel distances bw. these cities are given as input, 
and MDS places them in two dims. such that these 
distances are preserved as well as possible.



Linear Discriminant Analysis 

 Find a low-dimensional 

space such that when x

is projected, classes are 

well-separated.

 Find w that maximizes
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2 class case

27
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 Between-class scatter:

 Within-class scatter:
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Fisher’s Linear Discriminant
37

 1
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 Find w that max

 LDA soln:

 Parametric soln:
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 Within-class scatter: 

 Between-class scatter:

 Find W that max

K > 2 Classes
38
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PCA vs LDA
40



Canonical Correlation Analysis
41

 X={xt,yt}t ; two sets of variables x ∈ Rd and y ∈ Re

 We want to find two projections w and v such that

when x is projected along w and y is projected 

along v, the correlation is maximized:



Canonical Correlation Analysis
42

 Maximize wTSxyv subject to wTSxxw=1 and vTSyyv=1.

 Writing these as Lagrangian terms …

 w should be an eigenvector of Sxx
-1SxySyy

-1Syx and 

similarly v should be an eigenvector of                  

Syy
-1SyxSxx

-1Sxy

 Choose k as the dimensionality then we get the 

canonical variates by projecting the training 

instances along them



Canonical Correlation Analysis
43

 x and y may be two different views or modalities; 

e.g., image and word tags, and CCA does a joint 

mapping



(Isometric feature mapping) Isomap
44

 Geodesic distance is the distance along the 

manifold that the data lies in, as opposed to the 

Euclidean distance in the input space



Isomap 
45

 Instances r and s are connected in the graph if 

||xr-xs||<ε or if xs is one of the k neighbors of xr 

The edge length is ||xr-xs||.

 For two nodes r and s not connected, the distance is 
equal to the shortest path between them.

 Once the N×N distance matrix is formed, use MDS to 
find a lower-dimensional mapping.

 This will have the effect of placing r and s that are far 
apart in the geodesic space also far apart in the new 
k-dim space even if they are close in terms of 
Euclidean distance in the original d-dim space.
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Locally Linear Embedding
47

1. LLE recovers global nonlinear structure from 

locally linear fits. 

2. Given xr find its neighbors xs
(r);

3. Find Wrs that minimize (using least squares 

subject to Wrr = 0,∀r and ΣsWrs = 1.)

3. Find the new coordinates zr that minimize
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LLE on Optdigits
49
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Laplacian Eigenmaps
50

 Let r and s be two instances and Brs is their similarity, 
we want to find zr and zs that 

 Brs can be defined in terms of similarity in an original 
space: 0 if xr and xs are too far, otherwise

 Defines a graph Laplacian, and feature embedding 
returns zr



Laplacian Eigenmaps on Iris
51

Spectral clustering (chapter 7)

Iris data reduced to two dimensions using multidimensional 
scaling and Laplacian eigenmaps. The latter leads to a more 
dense placement of similar instances.



Notes
52

 The forward and backward search procedures we 
discussed are local search procedures.

 You can use a stochastic procedure like simulated 
annealing or genetic algorithms to search more widely 
in the search space.

 There are also filtering algorithms for feature selection 
where heuristic measures are used to calculate the 
“relevance” of a feature in a preprocessing stage 
without actually using the learner.

 Projection methods work with numeric inputs, and 
discrete variables should be represented by 0/1 dummy 
variables, whereas subset selection can use discrete 
inputs directly.



Notes
53

 The projection methods we discussed are batch 
procedures in that they require that the whole sample 
be given before the projection directions are found. 
Mao and Jain (1995) discuss online procedures.

 Laplacian eigenmaps use the idea of feature embedding 
such that given pairwise similarities are preserved; the 
same idea is also used in kernel machines where 
pairwise similarities are given by a kernel function.

 Matrix decomposition methods are quite popular in 
various big data applications because they allow us to 
explain a large data matrix using smaller matrices.

 One example application is recommendation systems 
where we may have millions of movies and millions of 
customers and entries are customer ratings.



Notes
54

 There is a trade-off between feature extraction and 
decision making.

 If the feature extractor is good, the task of the classifier 
(or regressor) becomes trivial.

 If the classifier is good enough, then there is no need 
for feature extraction; it does its automatic feature 
selection or combination internally.

 There exist algorithms that do some feature selection 
internally, though in a limited way. Decision trees (Ch
9) do feature selection while generating the decision 
tree, and multilayer perceptrons (Ch 11) do nonlinear 
feature extraction in the hidden nodes.


