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Multivariate Data
-2 4
- Multiple measurements (sensors)

o d Iinputs/features/attributes: d-variate
o N Instances/observations/examples
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Multivariate Parameters

Mean: E[x]=p=[14,.... 16, ]
Covariance: o;; = Cov(X;, X )
o

Correlation: Corr (X;, X )= p; = —
O-iGj

The correlation between variables X; and X; is a statistic
normalized be tween -1 and +1.




Parameter Estimation

Sample mean m: m, =

Covariance matrix S: S; =

) ] S..
Correlation matrix R : I = 1



Estimation of Missing Values

s 4
- What to do If certain instances have missing
attributes?

- lgnore those instances: not a good idea If the
sample 1s small.

- Use ‘missing’ as an attribute: may give information

o Imputation: Fill in the missing value

o Mean imputation: Use the most likely value (e.g.,
mean)

o Imputation by regression: Predict based on other
attributes



Multivariate Normal Distribution
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Multivariate Normal Distribution

Mahalanobis distance: (x — u)" Y1 (X — u)

measures the distance from x to ¢ in terms of > (normalizes
for difference in variances and correlations)

Bivariate: d = 2 :
Z:|: Gl 10612()-2:|
PO0, Oy
1 1 5 5
P(X,X, )= exp| — 2, —2p02,2,+1
(1 2) 272010'2\/]7 I 2(1—,02)( : o 2)_
4 = (X' I )/G' z-normalization



Bivariate Normal
8|

Cov{x X,J=0, Var(x,}=Var(x,) Cov(x, X,)=0, Var(x J>Var(x,)
J(1
Cov(x, X,J>0 Covix, x,)<0
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Independent Inputs: Naive Bayes

If x; are independent, off-diagonals of > are 0,
Mahalanobis distance reduces to weighted (by 1/0;)
Euclidean distance:

i e 22

I=1

If variances are also equal, reduces to Euclidean
distance



Another Property of Normal Dist.

S
- The projection of x on the direction of wis: z = w'x
1 ZEW X WXt WXy
0 X~Ng4(u, Y)) andw € RO
0 E(WTX)=wWTE(X)=w" u
o Var(z) = Var(w'x) = E[(w'X — wTu)?]
= E[(W'x —w'g)(W'x — w'a)]
= E[WT(X — ) (X — u)"™W]  «—Note: AIB=BTA
=W E[(X —p)(X —) Jw =w' 3w

o In general case, If W Is dxk matrix with rank k<d
z=WTX~N, (W, WT Y W)



Parametric Classification

1fp (X[Ci)~N(a, 20)

p(X|C,)= - exp[—%(x—ui ) = (x—n, )}

(272_)(1/2 ‘ZI ‘1/2

Discriminant functions

g;(x)=log p(xC;)+log P(C,)
:—%Iog2ﬂ—%log \Zi\—%(x—pi)T £ (x—p ) +log P(C,)



Estimation of Parameters

p(C ):Zl\tlff
m. :Ztritxt
DN
(X -m)(x -m,)
> DN
1 1 T

g, (x)=—§log \Si\—z(x—mi) S, (x-m;)+log P(C;)



Different S;

Quadratic discriminant

g; (x) = —%Iog \Si\—%(xTSi‘lx—ZxTSi‘lmi +miTSi‘1mi)+ log P(C,)
=X WX+W, X+W,
where
W—_1g
2
W. :S._lm.

W, :—%miTSi‘lmi —%Iog S, |+ log I5(Ci)
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discriminant:
P (C1|X) =0.5

posterior for C, ‘ O
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Common Covariance Matrix S

Shared common sample covariance S

S:ZFA’(Ci)Si

Discriminant reduces to
9, (x) == (x-m,)" §*(x-m,)+Iog F(C)

which Is a linear discriminant
T
of (X) =W; X+ W,

where

W, =S"m._ w, :—%miTS “m. +log I5(Ci)



Common Covariance Matrix S

%




Diagonal S

.y

o When x; J=1,..d, are independent, 3’ is diagonal
p (X|C)) = HJ. p (%|C;) (Naive Bayes’ assumption)

0, (X)}%i{

j=1

t

S

2
m“j +log P(C,)

Classify based on weighted Euclidean distance (in s;
units) to the nearest mean



Diagonal S

0

0

variances may be
different




Diagonal S, equal variances

Nearest mean classifier: Classify based on Euclidean
distance to the nearest mean

d
t .
== jl(xj -m; ) +log P(C;)
Each mean can be considered a prototype or template
and this 1s template matching

9i (x):—Hx—mi\z :_(X_mi)T (x=m;)

= —(x"x—2m{x+m{m, )



Dropping the 15t term,
g; (X) =W, X+ W,
Where w,=m; and wi,= — (1/2)||m;||?
If all m; have similar norms,
g, (X)=m/x
When the norms of m; are comparable, dot product

can also be used as the similarity measure instead
of the (negative) Euclidean distance.



Diagonal S, equal variances




Model Selection

Assumption Covariance matrix No of parameters
Shared, Hyperspheric S;=S=5°l 1
Shared, Axis-aligned Si=S, with s;=0 d
Shared, Hyperellipsoidal Si=S d(d+1)/2
Different, Hyperellipsoidal S; K d(d+1)/2

As we Increase complexity (less restricted S), bias
decreases and variance Increases

Assume simple models (allow some bias) to control
variance (regularization)




FPopulation likelihoods and posteriors
4

24 X

Shared covar.




Discrete Features

Binary features: p;=p(x ;=1C)
If x; are independent (Naive Bayes’)

p(XC;) = Hpu (1-p,)""

the dlscrlmlnant IS linear
g;(x)=log p(x|C;)+log P(C;)

Z[ log p; +(1-x; ) log (1-p, )}+Iog P(C,)

2%
Estimated parameters p, = = j

s




Discrete Features

Multinomial (1-of- nJ) features: X; € {vy, Vs,..., n}

t 1 1If X =V, (ij :]_|Ci): p(Xj :Vklci)

/.. = .y =
"o otherW|se P =P
It x; are independent

p(XIC;) HH Pk

j=1 k=1

:ijkzjk log p;, +log P(C,)




Multivariate Regression

rt :g (Xt|WO,W1,

—_ t t t
oW )+g =W, W X, AW X, 4+ W Xy + &

Multivariate linear model

Minimizing the sum of squared errors:

1
E (WO,Wl,...,Wd|X)=§Z:t[rt —Wy, _Wlxi _"'_deé T

Taking the ¢

erivative with respect to the parameters,

w;,J =0,...,0

, we get these normal equations:
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i 11 1 - - 7 -1
I X7 x5 X4 Wo r
1 x5 X3 X5 Wi =
X = W = ¥ =
1 XY Xy Xy Wd, N
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Then the normal equations can be written as
X xw=Xr=w=(XX) Xr

This method Is the same as we used for polynomial
regression using one input.
Multivariate polynomial model:

Define new higher-order variables

Z1=Xqy Zo=Xy, Z3=X1%, Z4=X0%, Ze=X (X,
and use the linear model in this new z space

(basis functions, kernel trick: Chapter 13)



