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Parametric Estimation
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 A statistic is any value that is calculated from a given 
sample.

 The advantage of the parametric approach is that the 
model is defined up to a small number of parameters—
for example, mean, variance—the sufficient statistics
of the distribution.

 X = { xt }t where xt ~ p(x |θ)

 Parametric estimation: 

Assume a form for p (x |θ) and estimate θ , its sufficient 
statistics, using X

e.g., N( μ, σ2) where θ = { μ, σ2}



Maximum Likelihood Estimation
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 Likelihood of θ given the sample X

l (θ|X) = p (X |θ) = ∏
t
p (xt|θ)

 Log likelihood

L(θ|X) = log l (θ|X) = ∑
t
log p (xt|θ)

 Maximum likelihood estimator (MLE)

θ* = argmaxθ L(θ|X)



Examples: Bernoulli
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 Bernoulli: Two states, failure/success, x in {0,1} 

P (x) = px (1 – p ) (1 – x)

L (p|X) = log ∏
t
pxt

(1 – p) (1 – xt) 

MLE:
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 Multinomial: K > 2 states, xi in {0,1}

 Let x1 , x2 ,..., xK are the indicator variables where xi

is 1 if the outcome is state i and 0 otherwise.

P (x1,x2,...,xK) = ∏
i
pi

xi

MLE: (why?)

Examples: Multinomial

1 if experiment  chooses state 

0 otherwise
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Gaussian (Normal) Distribution
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 p(x) = N ( μ, σ2)

 MLE for μ and σ2:
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Bias and Variance
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Unknown parameter θ,      Estimator di = d (Xi) on sample Xi

The mean square error of the estimator d

Bias: bθ (d) = E[d] – θ,        Variance: E[(d–E [d])2]

If bθ(d) = 0 for all θ values, d is an unbiased estimator

m is also a consistent estimator, that is, Var(m) → 0 as N → ∞ .



The MLE of σ2
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Given that Var(X) = E[X2] − E[X]2 , we get E[X2]=Var(X) + E[X]2,

and we can write:

which shows that s2 is a biased estimator of σ2.
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This is an example of an asymptotically unbiased

estimator whose bias goes to 0 as N goes to infinity.

Mean square error: (Proof: Refer to textbook)

r (d, θ) = E [(d–θ)2]

= E [(d–E [d])2+(E [d] – θ)2

= Variance + (Bias)2

q



Bayes’ Estimator
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 Treat θ as a random var with prior p(θ)

 Bayes’ rule: p (θ|X) = p(X|θ) p(θ) / p(X) 

 p(x|X) = ∫ p(x,θ|X)dθ =∫ p(x|θ, X) p(θ|X) dθ

 =∫ p(x|θ) p(θ|X) dθ

 Where p(x|θ,X) = p(x|θ) because once we know θ, 
the sufficient statistics, we know everything about 
the distribution.

 Evaluating the integrals may be quite difficult, 
except in cases where the posterior has a nice form.



Bayes’ Estimator
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 If we can assume that p(θ|X) has a narrow peak 
around its mode, then using the maximum a 
posteriori (MAP) estimate will make the 
calculation easier.

 Maximum a Posteriori (MAP):

θMAP = argmaxθ p(θ|X)

p(x|X) = p(x|θMAP)

 Maximum Likelihood (ML): θML = argmaxθ p(X|θ)

 Bayes’ Estimator: θBayes’ = E[θ|X] = ∫ θ p(θ|X) dθ



Bayes’ Estimator: Example

 xt ~ N (θ, σ2) and θ ~ N ( μ0, σ0
2)

 θML = m

 θMAP = θBayes’ =
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Parametric Classification

     

     

|  

or 

log | log 

i i i

i i i

g x p x C P C

g x p x C P C



 

 
 

 
 

 

2

2

2

2

1
| exp  

22

1
log 2 log log 

2 2

i

i

ii

i

i i i

i

x
p x C

x
g x P C






 



 
  

  


    

13

discriminant function
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 Given the sample

 ML estimates are

 Plugging these estimates into equation, we get the 

discriminant function
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Equal variances

Single boundary at

halfway between means
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Variances are different

Two boundaries
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c1 c2c2
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reject with λ = 0.2



Regression
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f(x) is the unknown function, which we would like to approximate by 
our estimator, g(x|θ), defined up to a set of parameters θ.

     , |p r x p r x p x



Regression: From LogL to Error
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Ignoring the 2nd term since it does not depend on our estimator

the sum of squared errors called the least squares estimates

Error function



Linear Regression
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taking the derivative of the sum of squared errors with respect 
to w1 and w0
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Polynomial Regression
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Assuming Gaussian distributed error and maximizing 
likelihood corresponds to minimizing the sum of squared 
errors. Another measure is the relative square error (RSE).



Other Error Measures
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 Square Error: 

 Relative Square Error:

 If ERSE is close to 1, then our prediction is as good as 

predicting by the average; as it gets closer to 0, we have 

better fit. If ERSE is close to 1, this means that using a 

model based on input x does not work better than using 

the average which would be our estimator if there were 

no x; if ERSE is close to 0, input x helps.
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 A measure to check the goodness of fit by 

regression is the coefficient of determination that is

R2=1- ERSE

and for regression to be considered useful, we 

require R2 to be close to 1.

 Absolute Error: E (θ |X) = ∑t
|rt – g(xt|θ)|

 ε-sensitive Error: 

E (θ |X) = ∑ t
1(|rt – g(xt| θ)|>ε) (|rt – g(xt|θ)| – ε)



Tuning Model Complexity: Bias and Variance
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variance _ noise squared error

1st: The variance of r given x; it does not depend on g(·) or X. It 
is the variance of noise added, σ2 . This is the part of error that 
can never be removed, no matter what estimator we use.
2nd:  Deviation from the regression function, E[r|x]. This does 
depend on the estimator and the training set.

Why?



Estimating Bias and Variance
26

     

     

   

2
2

2

1

1
  

1

1

t t

t

t t

i

t i

M

i

i

Bias g g x f x
N

Variance g g x g x
NM

g x g x
M 

  
 

  
 









 M samples Xi={xt
i , r

t
i}, i =1,...,M 

are used to fit gi (x), i =1,...,M



Bias/Variance Dilemma
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 Example: gi(x)=2 has no variance and high bias

gi(x)= ∑t
rt

i ∕ N has lower bias with variance

 As we increase complexity, 

bias decreases (a better fit to data) and 

variance increases (fit varies more with data)

 Bias/Variance dilemma: (Geman et al., 1992)



Underfitting and overfitting
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 If there is bias, this indicates that our model class 

does not contain the solution; this is underfitting.

 If there is variance, the model class is too general 

and also learns the noise; this is overfitting.

 If g(·) is of the same hypothesis class with f(·), we 

have an unbiased estimator, and estimated bias 

decreases as the number of models increases.

 This shows the error-reducing effect of choosing 

the right model, which we called inductive bias.
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Function, f (x) = 2sin(1.5x), and one noisy (N(0, 1)) dataset sampled from the function.



Model Selection
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Best fit “min error”
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Best fit, “elbow”

Cross-validation



Model Selection
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 Cross-validation: Measure generalization accuracy by 
testing on data unused during training

 Regularization: Penalize complex models

E′ =error on data + λ . model complexity.

 The 2nd term that penalizes complex models with 
large variance, where λ gives the weight of this 
penalty. 

 If λ is taken too large, only very simple models are 
allowed and we risk introducing bias. λ is optimized 
using cross-validation.

 Also we can consider E′ as the error on new test data.
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 The 1st term on the right is the training error and the 
2nd is an optimism term estimating the discrepancy 
between training and test error.

 Akaike’s information criterion (AIC) and Bayesian 
information criterion (BIC) work by estimating this 
optimism and adding it to the training error to estimate 
test error, without any need for validation.

 Structural Risk Minimization (SRM):  Uses a set of 
models ordered in terms of their complexities. Finding 
the model simplest in terms of order and best in terms 
of empirical error on the data

 Minimum Description Length (MDL): Kolmogorov 
complexity, shortest description of data

Model Selection



Bayesian Model Selection
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 Prior on models, p (model)

 Regularization, when prior favors simpler models

 Bayes, MAP of the posterior, p (model|data)

 Average over a number of models with high posterior.

If we have a regression model and use the prior p(w) ∼
N(0, 1/λ), we minimize

 wi are close to 0, to have smoother fitted polynomial.
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Regression example
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Coefficients increase in 

magnitude as order increases:

1: [-0.0769, 0.0016]T

2: [0.1682, -0.6657, 0.0080]T

3: [0.4238, -2.5778, 3.4675, 

-0.0002]T

4: [-0.1093, 1.4356, 

-5.5007, 6.0454, -0.0019]T


