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Parametric Estimation

2

A statistic Is any value that is calculated from a given
sample.

The advantage of the parametric approach is that the
model is defined up to a small number of parameters—
for example, mean, variance—the sufficient statistics
of the distribution.

X = { xt},where xt~ p(x |6)
Parametric estimation:

Assume a form for p (x |#) and estimate 8 , its sufficient
statistics, using X

e.g., N(, o) where 6 = { i, 6%}




Maximum Likelihood Estimation

-~
Likelihood of & given the sample X

1(0]X) =p (X]0) =TI, p (x16)

Log likelihood
L(6]X) = log I (6]X) = 3., log p (X6)

Maximum likelithood estimator (MLE)
g = argmax, L(6|X)



Examples: Bernoulli

Bernoulli: Two states, failure/success, x in {0,1}
PX)=p*(1-p)@-x {E [X]=> xp(x)=1p+0.0-p)=p

Var (X) =" (x-E[x]) p(x) = p(l—p)

X

L (pIX) = log [T, P (1~ p) *

L(p|X)=>{x"log p+(1-x")log(L- p)}

=> x'log p+£N —th]Iog(l— D)



Examples: Multinomial
e
Multinomial: K > 2 states, x; in {0,1}

LetX,, X, ,..., Xx are the indicator variables where x;
IS 1 1f the outcome Is state 1 and O otherwise.

P (X, Xg X)) = [1; pi" Z P =1

L(Pys Pysvs P | X) = logTT, T, ' =log [T, p>" = log [T, p/"

K
=Y m'logp;, m'=> x = number of observations of x; =1
=1

X =

. |1 1f experiment t chooses state |
0 otherwise

1 g
MLE: pizﬁzxi (why?)



Gaussian (Normal) Distribution
-

pP(x)
A

p(x) =N (u, 0°)

p(x)=

N S (Xt — )
« L(u,olX) = —§log(27T) — Nlogo — 502

(x=p)°

2

exp| —
27O P 20

MLE for x and o~

1 1
mzﬁztlxt o8 :WZ‘(Xt —m)2



Bilas and Variance

[
Unknown parameter 4,  Estimator d; = d (X;) on sample X

The mean square error of the estimator d
r(d,0) = E[(d(X) — 6)°]

Bias: b, (d) = E[d] - 6, Variance: E[(d-E [d])?]

If by(d) = 0 for all 6 values, d is an unbiased estimator
E[m] = [Zr ]:—ZE[X — =q

m Is also a consistent estimator, that IS, Var(m) > 0as N — .

¢ 1 No? 2
Var(m) = Var (er ) = vaar(xw A AN 4
t

N N2 N



The MLE of 62

o Zt(xr _ m)2 B Zr(xr)z — Nm?
T N N

t
E[s°] = 2 EL)] N AREUIS

Given that Var(X) = E[X?] — E[X]?, we get E[X?]=Var(X) + E[X]?,
and we can write:

E[(x))?] = 0% + u® and E[m*] = 0°/N + u°

E[s°] =

N(o?+u*) =N(@?/N+p*) (N-1\ -,
N _( )U £

N
which shows that s2 is a biased estimator of c2.



-~
This 1s an example of an asymptotically unbiased

estimator whose bias goes to 0 as N goes to infinity.

Mean square error: (Proof: Refer to textbook)
r (d, ) = E [(d-0)?]
= E [(d-E [d])**(E [d] - 0)*
= Variance + (Bias)?
vdariance




Bayes’ Estimator

-
Treat 0 as a random var with prior p(6)

Bayes’ rule: p (6|X) = p(X|0) p(0) / p(X)
p(xIX) = I p(x,01X)d6 =] p(x|6, X) p(6]X) do
= p(x|6) p(O1X) do
Where p(x|8,X) = p(x|8) because once we know 6,

the sufficient statistics, we know everything about
the distribution.

Evaluating the integrals may be quite difficult,
except in cases where the posterior has a nice form.



Bayes’ Estimator

If we can assume that p(&8|X) has a narrow peak
around Its mode, then using the maximum a

posteriori (MAP) estimate will make the
calculation easier.

Maximum a Posteriori (MAP):

Orvap = argmax, p(o|X)

P(X|X) = p(X|Gpap)
Maximum Likelthood (ML): 6, = argmax, p(X|6)
Bayes’ Estimator: Oy, . = E[0]X] =] 0 p(6]X) d¢



Bayes’ Estimator: Example
e

~N (0, 6% and 6 ~ N ( zg, 642
By =M
Ovnp = 0

Bayes

N/o? 1/ o;

E[61X]= : —m+
N/o®+1/0o; N/o?+1/ o}

ZILlO



Parametric Classification
e
g, (x) =p (XlCi ) P (Ci ) discriminant function
or
g;(x)=log p(XC;)+log P(C,)

2
1 X=H
p(X|Ci)= 27O, b _( 20'-2)
(X_ﬂi)2

o] (x) = —%Iog 27 —log o, —

—~—+log P(C,)

20
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Given the sample X ={x',r'}},

X €N 1lifx'e C
re{O,l}K

0ifx' e Cj,j £ |
ML estimates are

thrit Z(Xt_mi)z rit Zrlt
m. 2 _ _t | |S(C|)= t

I |
i Zrlt , Si Zrlt
t t

Plugging these estimates Into equation, we get the
discriminant function

2
g, (x):—%log 27 —log s —(X;ST‘) +log IS(Ci)




Likelihoods
0.4 | | ! | |

Posteriors with equal priors

[
------------------------------------------------------- Single boundary at
.- halfway between means




Likelihoods
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Regression 1

] x FIRk]=wxew,
r=f(x)+e .  x ] f”x
estimator : g (x|6) T /;.}

&~N (0,02) (R
p(rix)~N(g(x16),c7) b

f(x) is the unknown function, which we would like to approximate by
our estimator, g(x|0), defined up to a set of parameters O.

p(rx)=p(rx)p(x)
L(0]X) = log ﬁp(xt,r‘):log ﬂp(rt|xt)+log ﬁp(xt)



Regression: From LogL to Error
e

Ignoring the 2"d term since it does not depend on our estimator

S [rt —g(xt|«9)]2

exp| —

Ell N2ro 20°

1 N
— —N Iog\/ﬂa— > [rt_g(xt|6’)

O 4

L(61X) =log

2

2

E (61X) = %i[rt -g (x |6’)] Error function

t=1

the sum of squared errors called the least squares estimates



Linear Regression

0
g(xt|wl,wo)=wlxt+w0

taking the derivative of the sum of squared errors with respect

to w; and w,
> ort=Nw,+w Y X'
t t

> orixt =wy X +le(xt )2
A= ' ZXt | _ | Wo __Zt:rt
(I E() ’W{Wj’y_i“”_




Polynomial Regression

2 e
k 2
t _ ¢ t t
g(x |W ,...,W2,W1,WO)—WK(X ) +---+W2(X ) + W, X" + W,

N > X! Zr(xf)Z .. Zt(xr)k
A ert Zr(xf)z Zr(xf)S .. Zr(xt)k+l
I Zt(xr)k Zr(xr)kﬂ Zt(xt)k+2 L Zr(xr)ZR )
WO | e ]
w1 > rixt
woo | we |y ]| S

;’Vk i .Z.r ri(xh)k .



1 (X1)2 (Xl)k ik
L AR B ) BN
1o e ()]

Assuming Gaussian distributed error and maximizing
likelihood corresponds to minimizing the sum of squared
errors. Another measure is the relative square error (RSE).



Other Error Measures

Square Error: E(9|X) = %ZN:[r‘ — (xt|9)]

> [r-o(x10)]

E(¢9|X) = >

S ]

t=1

Relative Square Error:

f Erse IS close to 1, then our prediction Is as good as
oredicting by the average; as it gets closer to 0, we have
petter fit. If Egxee IS close to 1, this means that using a
model based on input x does not work better than using
the average which would be our estimator if there were
no x; If Egee IS close to O, input x helps.




A measure to check the goodness of fit by
regression Is the coefficient of determination that Is

and for regression to be considered useful, we
require R? to be close to 1.

Absolute Error: E (6 |X) =% [r'—g(x[0)]
g-sensitive Error:
E(0X)=3, 1r'=g(x] O)>¢) (Ir'—g(x16)| - €)



uning Model Complexity: Bias and Variance

[
Why?

E[(r —g (x))2 |XJ — E[(r —E [r|x])2 |x}+(E [rix]-g (x))2

variance _ noise squared error

1st: The variance of r given x; it does not depend on g(-) or X. It
is the variance of noise added, o2 . This is the part of error that
can never be removed, no matter what estimator we use.

2nd: Deviation from the regression function, E[r|x]. This does
depend on the estimator and the training set.

E, [(E[rlx]— g(x)) |X} =(E[rx]-Ex[9g (X)])Z +Ex [(g (x)~Ex[ g (X)])z}

bias variance



Estimating Bias and Variance
-

M samples X;={x%, rt}, 1=1,...M
are used to fit g; (x), 1 =1,...,M



Bilas/Variance Dilemma

-
Example: g:(x)=2 has no variance and high bias

gi(x)= %", r'; /N has lower bias with variance

As we Increase complexity,
bias decreases (a better fit to data) and
variance increases (fit varies more with data)
Bias/Variance dilemma: (Geman et al., 1992)



Underfitting and overfitting

If there Is bias, this indicates that our model class
does not contain the solution; this Is underfitting.

If there Is variance, the model class is too general
and also learns the noise; this is overfitting.

If g(-) Is of the same hypothesis class with f(-), we
have an unbiased estimator, and estimated bias
decreases as the number of models Increases.

This shows the error-reducing effect of choosing
the right model, which we called inductive bias.
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(a) Function and data

variance

3

-5

(b) Order 1

0 1 2 3 4 9

Function, f (x) = 2sin(1.5x), and one noisy (N(0, 1)) dataset sampled from the function.



Model Selection

2.5

Best fit “min error”

05k e e variance




Cross-validation

5

(a) Data and fitted polynomials

| | | | | | ]
0.5 15 2 25 3 35 45
(b) Error vs polynomial order
= Training
rooe Walidation
Best fit, “elbow”
] ] ] ] ]
3 4 5 ] 7




Model Selection

-~
Cross-validation: Measure generalization accuracy by

testing on data unused during training
Regularization: Penalize complex models
E' =error on data + A . model complexity.

The 2" term that penalizes complex models with
large variance, where A gives the weight of this
penalty.

If A Is taken too large, only very simple models are
allowed and we risk introducing bias. A Is optimized
using cross-validation.

Also we can consider E’ as the error on new test data.



Model Selection

The 15t term on the right is the training error and the
2nd s an optimism term estimating the discrepancy
between training and test error.

Akaike’s Information criterion (AIC) and Bayesian
Information criterion (BIC? work by estimating this
optimism and adding It to the training error to estimate
test error, without any need for validation.

Structural Risk Minimization (SRM): Uses a set of

models ordered in terms of their complexities. Finding
the model simplest in terms of order and best in terms
of empirical error on the data

Minimum Description Length (MDL): Kolmogorov
complexity, shortest description of data




Bayesian Model Selectioffs*a-ton -2

-~
Prior on models, p (model)

p(datajmodel) p(model)
p(data)

Regularization, when prior favors simpler models
Bayes, MAP of the posterior, p (model|data)

Average over a number of models with high posterior.
If we have a regression model and use the prior p(w) ~
N(O, 1/4), we minimize

N 2
E(w]X) = %Z[rt —q (xt|w)] +A) W
w; are close to 0, to have smt(;t)ther fitted polynomial.

p(model|data) =



= — ) ] = tn
T T 1

Regression example

| | | | |
tn b wa o] —
T T T T

Coefficients increase In
magnitude as order increases:
1. [-0.0769, 0.0016]"
2:[0.1682, -0.6657, 0.0080]"
3:[0.4238, -2.5778, 3.4675,
-0. 0002]T

4:[-0.1093, 1.4356,

-5.5007, 6.0454, -0.0019]"




