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Parametric Estimation
2

 A statistic is any value that is calculated from a given 
sample.

 The advantage of the parametric approach is that the 
model is defined up to a small number of parameters—
for example, mean, variance—the sufficient statistics
of the distribution.

 X = { xt }t where xt ~ p(x |θ)

 Parametric estimation: 

Assume a form for p (x |θ) and estimate θ , its sufficient 
statistics, using X

e.g., N( μ, σ2) where θ = { μ, σ2}



Maximum Likelihood Estimation
3

 Likelihood of θ given the sample X

l (θ|X) = p (X |θ) = ∏
t
p (xt|θ)

 Log likelihood

L(θ|X) = log l (θ|X) = ∑
t
log p (xt|θ)

 Maximum likelihood estimator (MLE)

θ* = argmaxθ L(θ|X)



Examples: Bernoulli
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 Bernoulli: Two states, failure/success, x in {0,1} 

P (x) = px (1 – p ) (1 – x)

L (p|X) = log ∏
t
pxt

(1 – p) (1 – xt) 

MLE:
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 Multinomial: K > 2 states, xi in {0,1}

 Let x1 , x2 ,..., xK are the indicator variables where xi

is 1 if the outcome is state i and 0 otherwise.

P (x1,x2,...,xK) = ∏
i
pi

xi

MLE: (why?)

Examples: Multinomial

1 if experiment  chooses state 

0 otherwise
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Gaussian (Normal) Distribution
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 p(x) = N ( μ, σ2)

 MLE for μ and σ2:
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Bias and Variance
7

Unknown parameter θ,      Estimator di = d (Xi) on sample Xi

The mean square error of the estimator d

Bias: bθ (d) = E[d] – θ,        Variance: E[(d–E [d])2]

If bθ(d) = 0 for all θ values, d is an unbiased estimator

m is also a consistent estimator, that is, Var(m) → 0 as N → ∞ .



The MLE of σ2
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Given that Var(X) = E[X2] − E[X]2 , we get E[X2]=Var(X) + E[X]2,

and we can write:

which shows that s2 is a biased estimator of σ2.
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This is an example of an asymptotically unbiased

estimator whose bias goes to 0 as N goes to infinity.

Mean square error: (Proof: Refer to textbook)

r (d, θ) = E [(d–θ)2]

= E [(d–E [d])2+(E [d] – θ)2

= Variance + (Bias)2

q



Bayes’ Estimator
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 Treat θ as a random var with prior p(θ)

 Bayes’ rule: p (θ|X) = p(X|θ) p(θ) / p(X) 

 p(x|X) = ∫ p(x,θ|X)dθ =∫ p(x|θ, X) p(θ|X) dθ

 =∫ p(x|θ) p(θ|X) dθ

 Where p(x|θ,X) = p(x|θ) because once we know θ, 
the sufficient statistics, we know everything about 
the distribution.

 Evaluating the integrals may be quite difficult, 
except in cases where the posterior has a nice form.



Bayes’ Estimator
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 If we can assume that p(θ|X) has a narrow peak 
around its mode, then using the maximum a 
posteriori (MAP) estimate will make the 
calculation easier.

 Maximum a Posteriori (MAP):

θMAP = argmaxθ p(θ|X)

p(x|X) = p(x|θMAP)

 Maximum Likelihood (ML): θML = argmaxθ p(X|θ)

 Bayes’ Estimator: θBayes’ = E[θ|X] = ∫ θ p(θ|X) dθ



Bayes’ Estimator: Example

 xt ~ N (θ, σ2) and θ ~ N ( μ0, σ0
2)

 θML = m

 θMAP = θBayes’ =
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Parametric Classification
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discriminant function
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 Given the sample

 ML estimates are

 Plugging these estimates into equation, we get the 

discriminant function
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Equal variances

Single boundary at

halfway between means

15

c1 c2
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Variances are different

Two boundaries
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c1 c2c2
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reject with λ = 0.2



Regression

 

 

 

    

2

2

  

estimator : |

~ 0  

| ~ |  

r f x

g x

N

p r x N g x



q

 

q 

 

,

,

       
1 1 1

|X log , =log | log  
N N N

t t t t t

t t t

p x r p r x p xq
  

   L

18

f(x) is the unknown function, which we would like to approximate by 
our estimator, g(x|θ), defined up to a set of parameters θ.

     , |p r x p r x p x



Regression: From LogL to Error
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Ignoring the 2nd term since it does not depend on our estimator

the sum of squared errors called the least squares estimates

Error function



Linear Regression

 1 0 1 0| ,  t tg x w w w x w 

 

0 1

2

0 1

 t t

t t

t t t t

t t t

r Nw w x

r x w x w x

 

 

 

  

 
0

2

1

 , ,   

t t

t t

t tt t

tt t

N x r
w

w r xx x

   
     

       
      

 

 
w yA

1  y w w yA A 20

taking the derivative of the sum of squared errors with respect 
to w1 and w0
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Polynomial Regression
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Assuming Gaussian distributed error and maximizing 
likelihood corresponds to minimizing the sum of squared 
errors. Another measure is the relative square error (RSE).



Other Error Measures
23

 Square Error: 

 Relative Square Error:

 If ERSE is close to 1, then our prediction is as good as 

predicting by the average; as it gets closer to 0, we have 

better fit. If ERSE is close to 1, this means that using a 

model based on input x does not work better than using 

the average which would be our estimator if there were 

no x; if ERSE is close to 0, input x helps.
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 A measure to check the goodness of fit by 

regression is the coefficient of determination that is

R2=1- ERSE

and for regression to be considered useful, we 

require R2 to be close to 1.

 Absolute Error: E (θ |X) = ∑t
|rt – g(xt|θ)|

 ε-sensitive Error: 

E (θ |X) = ∑ t
1(|rt – g(xt| θ)|>ε) (|rt – g(xt|θ)| – ε)



Tuning Model Complexity: Bias and Variance
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variance _ noise squared error

1st: The variance of r given x; it does not depend on g(·) or X. It 
is the variance of noise added, σ2 . This is the part of error that 
can never be removed, no matter what estimator we use.
2nd:  Deviation from the regression function, E[r|x]. This does 
depend on the estimator and the training set.

Why?



Estimating Bias and Variance
26
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 M samples Xi={xt
i , r

t
i}, i =1,...,M 

are used to fit gi (x), i =1,...,M



Bias/Variance Dilemma
27

 Example: gi(x)=2 has no variance and high bias

gi(x)= ∑t
rt

i ∕ N has lower bias with variance

 As we increase complexity, 

bias decreases (a better fit to data) and 

variance increases (fit varies more with data)

 Bias/Variance dilemma: (Geman et al., 1992)



Underfitting and overfitting
28

 If there is bias, this indicates that our model class 

does not contain the solution; this is underfitting.

 If there is variance, the model class is too general 

and also learns the noise; this is overfitting.

 If g(·) is of the same hypothesis class with f(·), we 

have an unbiased estimator, and estimated bias 

decreases as the number of models increases.

 This shows the error-reducing effect of choosing 

the right model, which we called inductive bias.
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Function, f (x) = 2sin(1.5x), and one noisy (N(0, 1)) dataset sampled from the function.



Model Selection
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Best fit “min error”
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Best fit, “elbow”

Cross-validation



Model Selection
32

 Cross-validation: Measure generalization accuracy by 
testing on data unused during training

 Regularization: Penalize complex models

E′ =error on data + λ . model complexity.

 The 2nd term that penalizes complex models with 
large variance, where λ gives the weight of this 
penalty. 

 If λ is taken too large, only very simple models are 
allowed and we risk introducing bias. λ is optimized 
using cross-validation.

 Also we can consider E′ as the error on new test data.
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 The 1st term on the right is the training error and the 
2nd is an optimism term estimating the discrepancy 
between training and test error.

 Akaike’s information criterion (AIC) and Bayesian 
information criterion (BIC) work by estimating this 
optimism and adding it to the training error to estimate 
test error, without any need for validation.

 Structural Risk Minimization (SRM):  Uses a set of 
models ordered in terms of their complexities. Finding 
the model simplest in terms of order and best in terms 
of empirical error on the data

 Minimum Description Length (MDL): Kolmogorov 
complexity, shortest description of data

Model Selection



Bayesian Model Selection
34

 Prior on models, p (model)

 Regularization, when prior favors simpler models

 Bayes, MAP of the posterior, p (model|data)

 Average over a number of models with high posterior.

If we have a regression model and use the prior p(w) ∼
N(0, 1/λ), we minimize

 wi are close to 0, to have smoother fitted polynomial.
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Regression example
35

Coefficients increase in 

magnitude as order increases:

1: [-0.0769, 0.0016]T

2: [0.1682, -0.6657, 0.0080]T

3: [0.4238, -2.5778, 3.4675, 

-0.0002]T

4: [-0.1093, 1.4356, 

-5.5007, 6.0454, -0.0019]T


