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Probability and Inference
2

 Result of tossing a coin is  {Heads, Tails}

 Random var X {1,0}

Bernoulli: P {X=1} = po
X (1 ‒ po)

(1 ‒ X)

 Sample: X = {xt }N
t =1

Estimation: po = # {Heads}/#{Tosses} = ∑
t
xt / N

 Prediction of next toss:

Heads if po > ½, Tails otherwise

In the theory of probability and statistics, a Bernoulli trial is an 
experiment whose outcome is random and can be either of two 
possible outcomes, "success" and "failure".

( ) (1 )k n k
n

P X k p p
k

http://en.wikipedia.org/wiki/Probability
http://en.wikipedia.org/wiki/Statistics
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Binomial Distribution

http://en.wikipedia.org/wiki/File:Binomial_distribution_pmf.svg


Classification

 Credit scoring: Inputs are income and savings. 

Output is low-risk vs high-risk

 Input: x = [x1,x2]
T ,Output: 𝐶  {0,1}

 Prediction: 

1 2

1 2 1 2

1 if ( 1| ) 0 5 
Choose 

0 otherwise

or 
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Bayes’ Rule
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Bayes’ Rule: K>2 Classes
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Remember: The disease/symptom example



Losses and Risks

 Actions: αi

 Loss of αi when the state is Ck : λik

 Expected risk (Duda and Hart)
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Remark:
λik is the cost of choosing iwhen k is correct!
If we use accuracy/error, then 
λik := If i=k then 0 else 1! 



Losses and Risks: 0/1 Loss
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For minimum risk, choose the most probable class



Losses and Risks: Reject

0    if 

    if 1,     0 1
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The Optimum Decision Rule
10
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Given the loss function



Example: 

C1=has cancer

C2=has not cancer

12=9

21=72

Homework:  

a) Determine the optimal decision making strategy

Inputs: P(C1|x), P(C2|x)

Decision Making Strategy:…

b) Now assume we also have a reject option and the cost for making no 

decision are 3:

reject, 2=3

reject, 1=3

Inputs: P(C1|x), P(C2|x)

Decision Making Strategy: …
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a) Determine the optimal decision making strategy

Inputs: P(C1|x), P(C2|x)

R(a1|x)=9×P(C2|x) ;   R(a2|x)=72×P(C1|x)

R(areject|x)=3

Setting those equal receive:

9×P(C2|x)=72×P(C1|x) (P(C2|x)/P(C1|x))=8; additionally using P(C1|x)+P(C2|x)=1 we 

receive: P(C1|x)=1/9 and P(C2|x)=8/9  and the risk-minimizing decision rule becomes: 

IF P(C1|x)>1/9 THEN choose C1 ELSE choose C2

b) Now assume we also have a reject option and the cost for making no decision are 3:

reject,2=3

reject, 1=3

Input: P(C1|x)

First we find  equating R(areject|x) with R(a1|x) and R(a2|x):

If P(C2|x)≥1/3  P(C1|x) ≤2/3 reject should be preferred over class1 and P(C1|x)≥1/24 

reject should be preferred over class2. Combining this knowledge with the previous 

decision  rule we receive:

IF P(C1|x)[0,1/24] THEN  choose class2

ELSE IF P(C1|x)[2/3,1]  THEN  choose class1

ELSE  choose reject
12



Different Losses and Reject
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Equal losses

Unequal losses

With reject



Discriminant Functions
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K decision regions R1,...,RK
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K=2 Classes

 Dichotomizer (K=2) vs Polychotomizer (K > 2)

 g(x) = g1(x) – g2(x)

 Log odds:
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Association Rules

 Association rule: An association rule is an 

implication of the form X → Y

 People who buy/click/visit/enjoy X are also likely 

to buy/click/visit/enjoy Y.

 A rule implies association, not necessarily 

causation.

16
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Association measures
17

 Support of (X → Y): 

 Confidence of (X → Y):

 Lift or interest of (X → Y):
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Example:

Support shows the statistical significance of the rule, 
whereas confidence shows the strength of the rule.

If lift  > 1, → X makes Y more likely, 
If lift < 1,  → X makes Y less likely.



Apriori algorithm (Agrawal et al., 1996)
19

 For (X,Y,Z), a 3-item set, to be frequent (have 

enough support), (X,Y), (X,Z), and (Y,Z) should be 

frequent.

 If (X,Y) is not frequent, none of its supersets can be 

frequent.

 Once we find the frequent k-item sets, we convert 

them to rules with enough confidence: X, Y→Z, ...

and X → Y, Z, ...


