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Learning a Class from Examples
2

 Class C of a “family car”

 Prediction: Is car x a family car?

 Knowledge extraction: What do people expect from a 

family car?

 Output: 

Positive (+) and negative (–) examples

 Input representation: 

x1: price, x2 : engine power
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Class C
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Family Car Decision Tree
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Hypothesis class H
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Error of h on H

H, the hypothesis class (the set of rectangles) from which we believe C is drawn

empirical error

where 1(a≠b) is 1 if a≠b
and is 0 if a = b

Generalization: how well our hypothesis will correctly classify 
future examples that are not part of the training set.



S, G, and the Version Space
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The most general hypothesis, G

h H, between S and G is

consistent and make up the 

version space (Mitchell, 1997)

The most specific hypothesis, S, the tightest 
rectangle that includes all the positive 
examples and none of the negative examples



Margin
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 Choose h with largest 

margin. It seems intuitive to 

choose h halfway between S 

and G; this is to increase the 

margin, which is the 

distance between the margin 

boundary and the instances 

closest to it.



Doubt
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 In some applications, a wrong decision may be 

very costly and in such a case, we can say that any 

instance that falls in between S and G is a case of 

doubt, which we cannot label with certainty due to 

lack of data. In such a case, the system rejects the 

instance and defers the decision to a human expert.
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Shattering Instances

• A hypothesis space is said to shatter a set of instances iff
for every partition of the instances into positive and 
negative, there is a hypothesis that produces that partition.

• For example, consider 2 instances described using a single 
real-valued feature being shattered by intervals.

x y
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Shattering Instances (cont)

• But 3 instances cannot be shattered by a single interval.

x y z

Cannot do

• Since there are 2m partitions of m instances, in order for H 
to shatter instances: |H|  ≥ 2m.
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VC Dimension

• An unbiased hypothesis space shatters the entire instance space.

• The larger the subset of X that can be shattered, the more 
expressive the hypothesis space is, i.e. the less biased.

• The Vapnik-Chervonenkis dimension, VC(H) of hypothesis 
space H defined over instance space X is the size of the largest 
finite subset of X shattered by H. If arbitrarily large finite 
subsets of X can be shattered then VC(H) = 

• If there exists at least one subset of X of size d that can be 
shattered then VC(H) ≥ d. If no subset of size d can be 
shattered, then VC(H) < d.

• For a single intervals on the real line, all sets of 2 instances can 
be shattered, but no set of 3 instances can, so VC(H) = 2.

• Since |H| ≥ 2m, to shatter m instances, VC(H) ≤ log2|H|



VC Dimension

•13

• N points can be labeled in 2N ways as +/–

• H shatters N if there exists h ε H consistent for 

any of these.

An axis-aligned rectangle 

shatters 4 points only !

That is, any learning problem 
definable by N examples can be 
learned with no error by a 
hypothesis drawn from H.
The maximum number of 
points that can be shattered by 
H is called the Vapnik-
Chervonenkis (VC) dimension.
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VC Dimension Example

• Consider axis-parallel rectangles in the real-plane, i.e. 
conjunctions of intervals on two real-valued features. 
Some 4 instances can be shattered.

Some 4 instances cannot be shattered:
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VC Dimension Example (cont)

• No five instances can be shattered since there can be at 

most 4 distinct extreme points (min and max on each of the 

2 dimensions) and these 4 cannot be included without 

including any possible 5th point.

• Therefore VC(H) = 4

• Generalizes to axis-parallel hyper-rectangles (conjunctions 

of intervals in n dimensions): VC(H)=2n.
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Probably Approximately Correct (PAC) 

Learning

• The only reasonable expectation of a learner 

is that with high probability it learns a close 

approximation to the target concept.

• In the PAC model, we specify two small 

parameters, ε and δ, and require that with 

probability at least (1  δ) a system learn a 

concept with error at most ε.
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Formal Definition of PAC-Learnable

• Consider a concept class C defined over an 

instance space X containing instances of length n, 

and a learner, L, using a hypothesis space, H. C is 

said to be PAC-learnable by L using H iff for all 

cC, distributions D over X, 0<ε<0.5, 0<δ<0.5;  

learner L by sampling random examples from 

distribution D, will with probability at least 1 δ

output a hypothesis hH such that errorD(h) ε, in 

time polynomial in 1/ε, 1/δ, n and size(c).
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Issues of PAC Learnability

• The computational limitation also imposes a 
polynomial constraint on the training set size, 
since a learner can process at most polynomial 
data in polynomial time.

• How to prove PAC learnability:
– First prove sample complexity of learning C using H is 

polynomial.

– Second prove that the learner can train on a 
polynomial-sized data set in polynomial time.

• To be PAC-learnable, there must be a hypothesis 
in H with arbitrarily small error for every concept 
in C, generally C  H.



Probably Approximately Correct (PAC) 

Learning (2)
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 How many training examples N should we have, such that 

with probability at least 1 ‒ δ, h has error at most ε?

(Blumer et al., 1989)

 Each strip is at most ε/4

 Pr that we miss a strip 1‒ ε/4

 Pr that N instances miss a strip (1 ‒ ε/4)N

 Pr that N instances miss 4 strips 4(1 ‒ ε/4)N

 (1 ‒ x)≤exp( ‒ x) → 4(1 ‒ ε/4)N ≤ δ

 4exp(‒ εN/4) ≤ δ and N ≥ (4/ε)log(4/δ)
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 Therefore, provided that we take at least (4/ε)log(4/δ) 

independent examples from C and use the tightest 

rectangle as our hypothesis h, with confidence 

probability at least 1 − δ, a given point will be 

misclassified with error probability at most ε. 

 We can have arbitrary large confidence by decreasing 

δ and arbitrary small error by decreasing ε, and we 

see in above equation that the number of examples is 

a slowly growing function of 1/ε and 1/δ, linear and 

logarithmic, respectively.

N ≥ (4/ε)log(4/δ)



Noise and Model Complexity
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 Imprecision in recording the input attributes

 Errors in labeling the

data points

 May be additional 

attributes, which we 

have not taken into

account,
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Use the simpler one because

 Simpler to use (lower computational complexity)

 Easier to train (lower space complexity)

 Easier to explain (more interpretable)

 Generalizes better (lower variance - Occam’s razor)

 Note: A simpler model has more bias. Finding the optimal 
model corresponds to minimizing both the bias and the 
variance.

 Occam’s razor: Simpler explanations are more plausible and 
any unnecessary complexity should be shaved off.

Noise and Model Complexity



Multiple Classes, Ci ,i=1,...,K
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Train hypotheses 

hi(x), i =1,...,K:

The total empirical error



Regression
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 In classification, given an input, the output that is 

generated is Boolean; it is a yes/no answer.

 If the output is continuous and there is no noise the 

task is interpolation.

 In regression, there is noise added to the output of 

the unknown function

 The explanation for noise is that there are extra 

hidden variables that we cannot observe

zt denote those hidden variables.
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Regression
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We would like to approximate the output by our model g(x).

The empirical error is:

If g(x) is linear:

Error minimization



Model Selection & Generalization
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 Learning is an ill-posed problem when; data is not 
sufficient to find a unique solution.

 Exp: There are 2d possible ways to write d binary 
values and therefore, with d inputs, the training set 
has at most 2d examples.

 After seeing N example cases, there remain 22d −N

possible functions.

 The need for inductive bias, assumptions about H; 
make some extra assumptions to have a unique 
solution with the data we have.
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 Assuming the shape of a rectangle is one inductive 

bias, and then the rectangle with the largest margin 

for example, is another inductive bias.

 Generalization: 

 How well a model performs on new data

 Overfitting: H more complex than C or f 

 Underfitting: H less complex than C or f



Underfitting and Overfitting

Overfitting

Underfitting: when model is too simple, both training and test errors are large 

Complexity of a Decision
Tree = number of nodes 
it uses

Underfitting

Complexity of the classification function

Overfitting: when model is too complex and test errors are large although 
training errors are small.



Triple Trade-Off
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 There is a trade-off between three factors 

(Dietterich, 2003):

1. Complexity of H, c(H),

2. Training set size, N, 

3. Generalization error, E, on new data

 As N , E ↓

 As c(H)  , first E ↓ and then E 



Cross-Validation

 Two errors: training error, and testing error usually 

called generalization error. Typically, the training 

error is smaller than the generalization error.

 To estimate generalization error, we need data 

unseen during training. We could split the data as

 Training set (50%)

 Validation set (25%)optional, for selecting ML algorithm 

parameters (e.g. model complexity)

 Test (publication) set (25%)

 Resampling when there is few data

Error on new examples; actually the 
testing error is used as an estimation
of the generalization error!

30



Dimensions of a Supervised Learner
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The sample is independent and identically 
distributed (iid); the ordering is not important 
and all instances are drawn from the same joint 
distribution p(x,r). 

The aim is to build a good and useful approximation to rt

using the model g(xt |θ).

Three following decisions we must make:

1. Model:  |  g x θ

where g(·) is the model, x is the input, and θ are the 
parameters.

31
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2. Loss function: The approximation error, or loss, is the sum of 

losses over the individual instances

3. Optimization procedure: To find θ∗ that minimizes the total 

error

    |X , |  t t

t

E L r g  x

 * arg min |X  E

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The model (inductive bias), or H, is fixed by the machine 
learning system designer based on his or her knowledge of 
the application and the hypothesis h is chosen (parameters 
are tuned) by a learning algorithm using the training set, 
sampled from p(x,r).

Remark: This procedure is typical for Parametric approaches to 

supervised learning; Non-parametric approaches work differently!
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 For this setting to work well, the following 
conditions should be satisfied:

 The hypothesis class of g(·) should be large enough, 
that is, have enough capacity, to include the unknown 
function that generated the data that is represented in X
in a noisy form.

 There should be enough training data to allow us to 
pinpoint the correct (or a good enough) hypothesis 
from the hypothesis class.

 We should have a good optimization method that finds 
the correct hypothesis given the training data.

Conditions 


