

Lecture Slides for INTRODUCTION TO MACHINE LEARNING 3RD EDITION

ETHEM ALPAYDIN © The MIT Press, 2014

alpaydin@boun.edu.tr http://www.cmpe.boun.edu.tr/~ethem/i2ml3e CHAPTER 2: SUPERVISED LEARNING

Learning a Class from Examples

\Box Class C of a "family car"

Prediction: Is car x a family car?

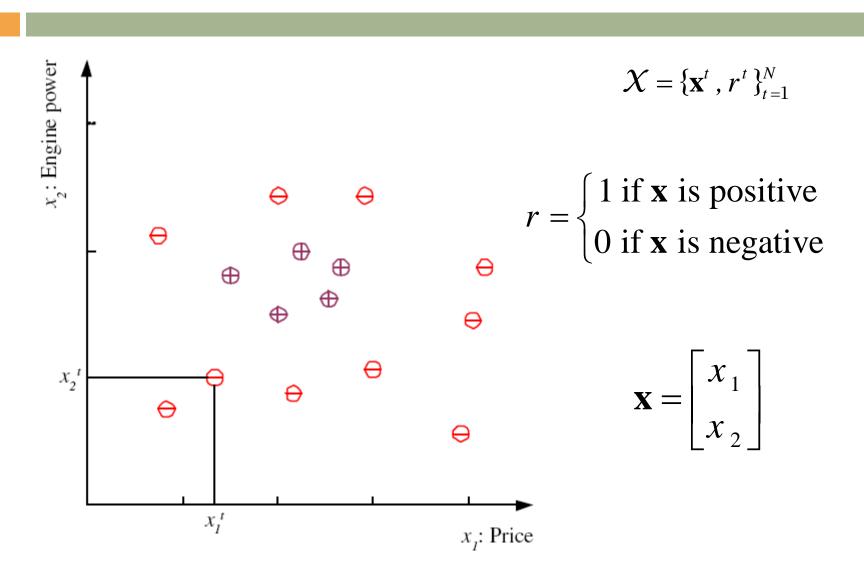
- **Knowledge extraction**: What do people expect from a family car?
- □ Output:

Positive (+) and negative (-) examples

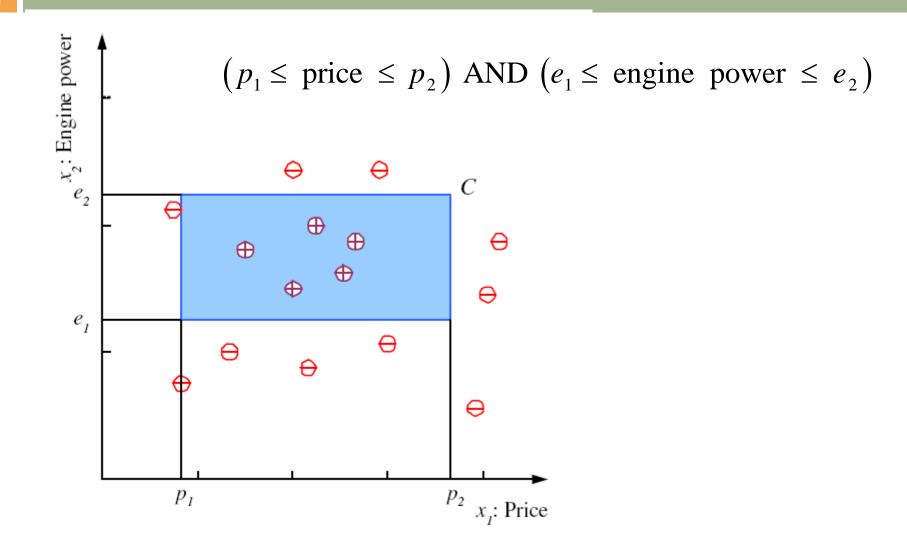
□ Input representation:

 x_1 : price, x_2 : engine power

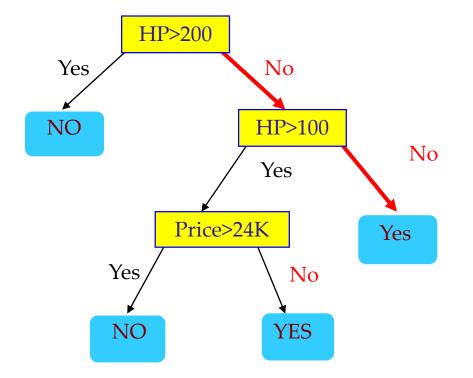
Training set X



Class C

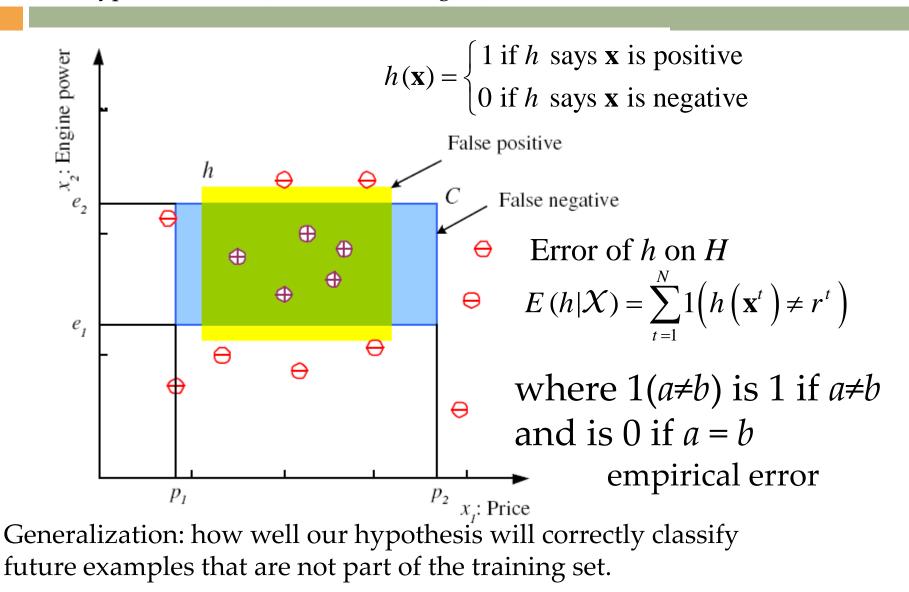


Family Car Decision Tree



Hypothesis class H

H, the hypothesis class (the set of rectangles) from which we believe *C* is drawn

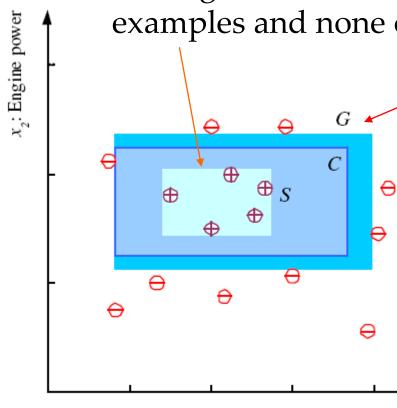


S, G, and the Version Space

The most specific hypothesis, *S*, *the* tightest rectangle that includes all the positive examples and none of the negative examples

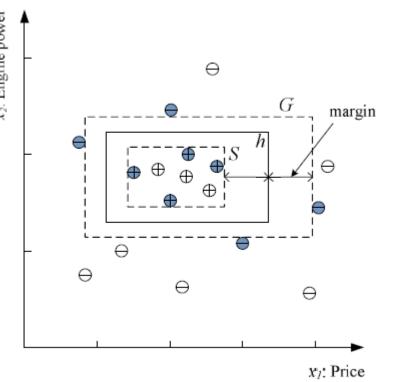
The most general hypothesis, G

 $h \in H$, between S and G is consistent and make up the version space (Mitchell, 1997)



Margin

□ Choose *h* with largest Engine power margin. It seems intuitive to choose *h* halfway between S and G; this is to increase the margin, which is the distance between the margin boundary and the instances closest to it.

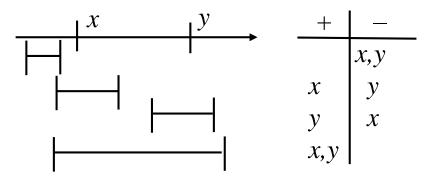


Doubt

- 9
- In some applications, a wrong decision may be very costly and in such a case, we can say that any instance that falls in between S and G is a case of doubt, which we cannot label with certainty due to lack of data. In such a case, the system rejects the instance and defers the decision to a human expert.

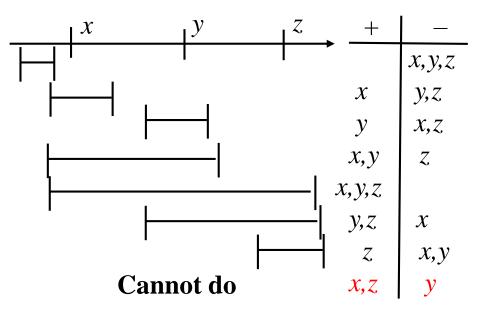
Shattering Instances

- A hypothesis space is said to shatter a set of instances iff for every partition of the instances into positive and negative, there is a hypothesis that produces that partition.
- For example, consider 2 instances described using a single real-valued feature being shattered by intervals.



Shattering Instances (cont)

• But 3 instances cannot be shattered by a single interval.



• Since there are 2^m partitions of *m* instances, in order for *H* to shatter instances: $|H| \ge 2^m$.

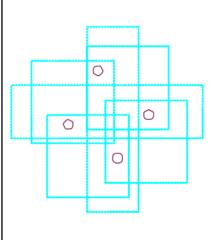
VC Dimension

- An unbiased hypothesis space shatters the entire instance space.
- The larger the subset of *X* that can be shattered, the more expressive the hypothesis space is, i.e. the less biased.
- The Vapnik-Chervonenkis dimension, VC(H) of hypothesis space *H* defined over instance space *X* is the size of the largest finite subset of *X* shattered by *H*. If arbitrarily large finite subsets of *X* can be shattered then $VC(H) = \infty$
- If there exists at least one subset of *X* of size *d* that can be shattered then $VC(H) \ge d$. If no subset of size *d* can be shattered, then VC(H) < d.
- For a single intervals on the real line, all sets of 2 instances can be shattered, but no set of 3 instances can, so VC(H) = 2.
- Since $|H| \ge 2^m$, to shatter *m* instances, $VC(H) \le \log_2|H|$

VC Dimension

- N points can be labeled in 2^N ways as +/-
- *H* shatters *N* if there exists $h \in H$ consistent for any of these.

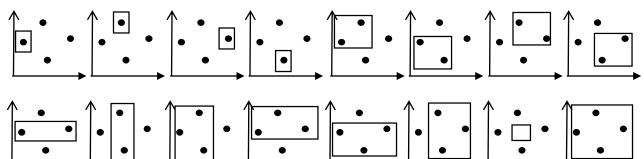
That is, any learning problem definable by *N* examples can be learned with no error by a hypothesis drawn from *H*. The maximum number of points that can be shattered by H is called the Vapnik-Chervonenkis (VC) dimension.



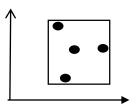
An axis-aligned rectangle shatters 4 points only !

VC Dimension Example

• Consider axis-parallel rectangles in the real-plane, i.e. conjunctions of intervals on two real-valued features. Some 4 instances can be shattered.

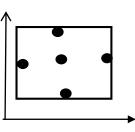


Some 4 instances cannot be shattered:



VC Dimension Example (cont)

 No five instances can be shattered since there can be at most 4 distinct extreme points (min and max on each of the 2 dimensions) and these 4 cannot be included without including any possible 5th point.



- Therefore VC(H) = 4
- Generalizes to axis-parallel hyper-rectangles (conjunctions of intervals in *n* dimensions): *VC*(*H*)=2*n*.

Probably Approximately Correct (PAC) Learning

- The only reasonable expectation of a learner is that with *high probability* it learns a *close approximation* to the target concept.
- In the PAC model, we specify two small parameters, ε and δ , and require that with probability at least (1δ) a system learn a concept with error at most ε .

Formal Definition of PAC-Learnable

• Consider a concept class C defined over an instance space X containing instances of length n, and a learner, L, using a hypothesis space, H. C is said to be **PAC-learnable** by L using H iff for all $c \in C$, distributions *D* over *X*, 0< ϵ <0.5, 0< δ <0.5; learner L by sampling random examples from distribution D, will with probability at least $1-\delta$ output a hypothesis $h \in H$ such that $\operatorname{error}_{D}(h) \leq \varepsilon$, in time polynomial in $1/\epsilon$, $1/\delta$, *n* and size(*c*).

Issues of PAC Learnability

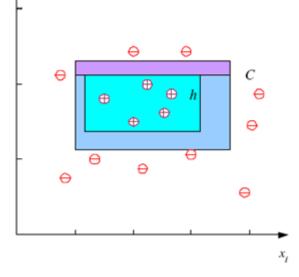
- The computational limitation also imposes a polynomial constraint on the training set size, since a learner can process at most polynomial data in polynomial time.
- How to prove PAC learnability:
 - First prove sample complexity of learning *C* using *H* is polynomial.
 - Second prove that the learner can train on a polynomial-sized data set in polynomial time.
- To be PAC-learnable, there must be a hypothesis in *H* with arbitrarily small error for every concept in *C*, generally $C \subseteq H$.

Probably Approximately Correct (PAC) Learning (2)

- How many training examples N should we have, such that with probability at least 1 δ, h has error at most ε?
 (Blumer et al., 1989)
- Each strip is at most $\varepsilon/4$

19

- **Pr** that we miss a strip $1 \varepsilon/4$
- □ Pr that N instances miss a strip $(1 \varepsilon/4)^N$
- □ Pr that N instances miss 4 strips $4(1 \epsilon/4)^N$
- $\Box (1-x) \leq \exp(-x) \to 4(1-\varepsilon/4)^N \leq \delta$
- $\Box 4\exp(-\epsilon N/4) \le \delta \text{ and } N \ge (4/\epsilon)\log(4/\delta)$

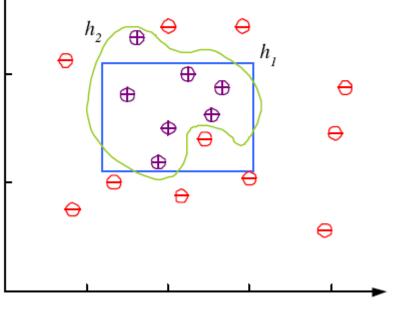


 $N \ge (4/\varepsilon)\log(4/\delta)$

- Therefore, provided that we take at least (4/ε)log(4/δ) independent examples from *C* and use the tightest rectangle as our hypothesis *h*, with confidence probability at least 1 δ, a given point will be misclassified with error probability at most ε.
- We can have arbitrary large confidence by decreasing δ and arbitrary small error by decreasing ε, and we see in above equation that the number of examples is a slowly growing function of 1/ε and 1/δ, linear and logarithmic, respectively.

Noise and Model Complexity

- Imprecision in recording the input attributes
- Errors in labeling the data points
- May be additional attributes, which we have not taken into account,



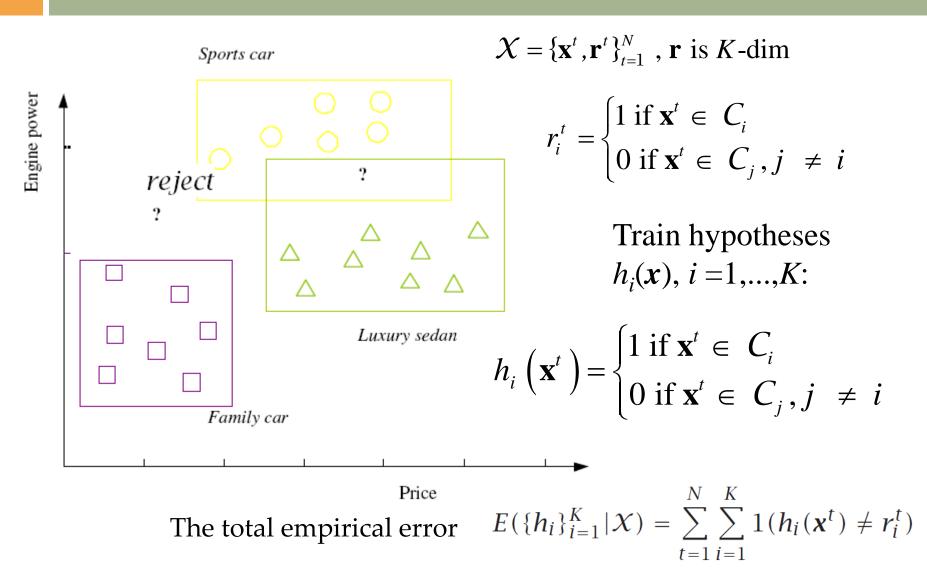
Noise and Model Complexity

22

Use the simpler one because

- Simpler to use (lower computational complexity)
- Easier to train (lower space complexity)
- Easier to explain (more interpretable)
- Generalizes better (lower variance Occam's razor)
 - Note: A simpler model has more bias. Finding the optimal model corresponds to minimizing both the bias and the variance.
- Occam's razor: Simpler explanations are more plausible and any unnecessary complexity should be shaved off.

Multiple Classes, C_i , i=1,...,K



Regression

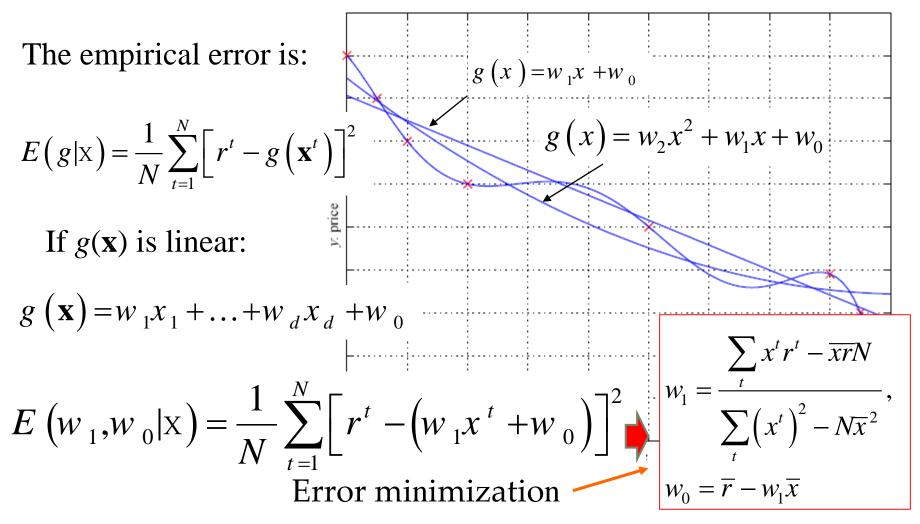
- 24
- In classification, given an input, the output that is generated is Boolean; it is a yes/no answer.
- □ If the output is continuous and there is no noise the task is *interpolation*. $X = \{\mathbf{x}^{t}, r^{t}\}_{t=1}^{N}, r^{t} \in \Re, r^{t} = f(\mathbf{x}^{t})\}$
- □ In regression, there is noise added to the output of the unknown function $r^t = f(\mathbf{x}^t) + \varepsilon$
- The explanation for noise is that there are extra hidden variables that we cannot observe

$$r^t = f^* \left(\mathbf{x}^t, \mathbf{z}^t \right)$$

 \mathbf{z}^t denote those hidden variables.

Regression

We would like to approximate the output by our model $g(\mathbf{x})$.

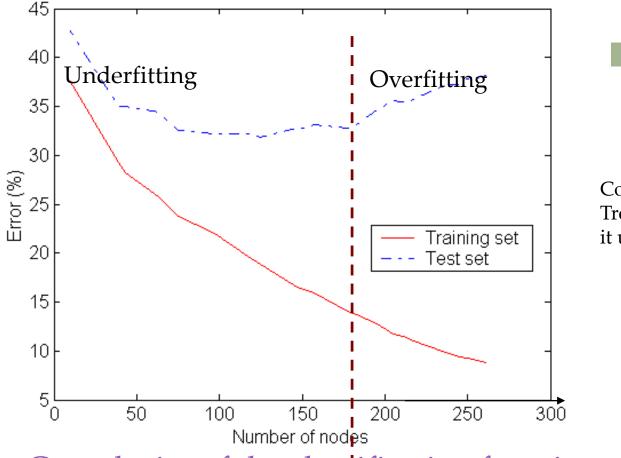


Model Selection & Generalization

- Learning is an ill-posed problem when; data is not sufficient to find a unique solution.
- Exp: There are 2^d possible ways to write d binary values and therefore, with d inputs, the training set has at most 2^d examples.
- □ After seeing *N* example cases, there remain $2^{2^{d}-N}$ possible functions.
- The need for inductive bias, assumptions about *H*; make some extra assumptions to have a unique solution with the data we have.

- Assuming the shape of a rectangle is one inductive bias, and then the rectangle with the largest margin for example, is another inductive bias.
- □ Generalization:
- □ How well a model performs on new data
- \Box Overfitting: *H* more complex than *C* or *f*
- \Box Underfitting: *H* less complex than *C* or *f*

Underfitting and Overfitting



Complexity of a Decision Tree = number of nodes it uses

Complexity of the classification function

Underfitting: when model is too simple, both training and test errors are large

Overfitting: when model is too complex and test errors are large although training errors are small.

Triple Trade-Off

- There is a trade-off between three factors (Dietterich, 2003):
 - 1. Complexity of H, c(H),
 - 2. Training set size, *N*,
 - 3. Generalization error, *E*, on new data
- $\Box \quad \text{As } N \uparrow, E \downarrow$
- □ As c(H) ↑, first $E \downarrow$ and then E ↑

Cross-Validation

Error on new examples; actually the testing error is used as an estimation of the generalization error!

- Two errors: training error, and testing error usually called generalization error. Typically, the training error is smaller than the generalization error.
- To estimate generalization error, we need data unseen during training. We could split the data as
 - Training set (50%)
 - Validation set (25%)→optional, for selecting ML algorithm parameters (e.g. model complexity)
 - Test (publication) set (25%)
- Resampling when there is few data

Dimensions of a Supervised Learner

31

- The sample is independent and identically $X = \left\{ \mathbf{x}^{t}, \mathbf{r}^{t} \right\}_{t=1}^{N}$ distributed (*iid*); the ordering is not important and all instances are drawn from the same joint distribution $p(\mathbf{x},\mathbf{r})$.

The aim is to build a good and useful approximation to \mathbf{r}^{t} using the model $g(\mathbf{x}^t | \boldsymbol{\theta})$.

Three following decisions we must make:

1. Model: $g(\mathbf{x}|\boldsymbol{\theta})$

where $g(\cdot)$ is the model, **x** is the input, and θ are the parameters.

The model (inductive bias), or *H*, is fixed by the machine learning system designer based on his or her knowledge of the application and the hypothesis *h* is chosen (parameters are tuned) by a learning algorithm using the training set, sampled from $p(\mathbf{x}, \mathbf{r})$.

2. Loss function: The approximation error, or loss, is the sum of losses over the individual instances

$$E(\theta|\mathbf{X}) = \sum_{t} L(r^{t}, g(\mathbf{x}^{t}|\theta))$$

3. Optimization procedure: To find θ^* that minimizes the total error

$$\theta^* = \arg \min_{\theta} E(\theta | \mathbf{X})$$

Remark: This procedure is typical for Parametric approaches to supervised learning; Non-parametric approaches work differently!

Conditions

- For this setting to work well, the following conditions should be satisfied:
 - The hypothesis class of g(·) should be large enough, that is, have enough capacity, to include the unknown function that generated the data that is represented in X in a noisy form.
 - There should be enough training data to allow us to pinpoint the correct (or a good enough) hypothesis from the hypothesis class.
 - We should have a good optimization method that finds the correct hypothesis given the training data.