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Learning a Class from Examples
2

 Class C of a “family car”

 Prediction: Is car x a family car?

 Knowledge extraction: What do people expect from a 

family car?

 Output: 

Positive (+) and negative (–) examples

 Input representation: 

x1: price, x2 : engine power
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Class C
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Family Car Decision Tree
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Error of h on H

H, the hypothesis class (the set of rectangles) from which we believe C is drawn

empirical error

where 1(a≠b) is 1 if a≠b
and is 0 if a = b

Generalization: how well our hypothesis will correctly classify 
future examples that are not part of the training set.



S, G, and the Version Space
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The most general hypothesis, G

h H, between S and G is

consistent and make up the 

version space (Mitchell, 1997)

The most specific hypothesis, S, the tightest 
rectangle that includes all the positive 
examples and none of the negative examples



Margin
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 Choose h with largest 

margin. It seems intuitive to 

choose h halfway between S 

and G; this is to increase the 

margin, which is the 

distance between the margin 

boundary and the instances 

closest to it.



Doubt
9

 In some applications, a wrong decision may be 

very costly and in such a case, we can say that any 

instance that falls in between S and G is a case of 

doubt, which we cannot label with certainty due to 

lack of data. In such a case, the system rejects the 

instance and defers the decision to a human expert.
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Shattering Instances

• A hypothesis space is said to shatter a set of instances iff
for every partition of the instances into positive and 
negative, there is a hypothesis that produces that partition.

• For example, consider 2 instances described using a single 
real-valued feature being shattered by intervals.

x y
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Shattering Instances (cont)

• But 3 instances cannot be shattered by a single interval.

x y z

Cannot do

• Since there are 2m partitions of m instances, in order for H 
to shatter instances: |H|  ≥ 2m.
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VC Dimension

• An unbiased hypothesis space shatters the entire instance space.

• The larger the subset of X that can be shattered, the more 
expressive the hypothesis space is, i.e. the less biased.

• The Vapnik-Chervonenkis dimension, VC(H) of hypothesis 
space H defined over instance space X is the size of the largest 
finite subset of X shattered by H. If arbitrarily large finite 
subsets of X can be shattered then VC(H) = 

• If there exists at least one subset of X of size d that can be 
shattered then VC(H) ≥ d. If no subset of size d can be 
shattered, then VC(H) < d.

• For a single intervals on the real line, all sets of 2 instances can 
be shattered, but no set of 3 instances can, so VC(H) = 2.

• Since |H| ≥ 2m, to shatter m instances, VC(H) ≤ log2|H|



VC Dimension
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• N points can be labeled in 2N ways as +/–

• H shatters N if there exists h ε H consistent for 

any of these.

An axis-aligned rectangle 

shatters 4 points only !

That is, any learning problem 
definable by N examples can be 
learned with no error by a 
hypothesis drawn from H.
The maximum number of 
points that can be shattered by 
H is called the Vapnik-
Chervonenkis (VC) dimension.
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VC Dimension Example

• Consider axis-parallel rectangles in the real-plane, i.e. 
conjunctions of intervals on two real-valued features. 
Some 4 instances can be shattered.

Some 4 instances cannot be shattered:
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VC Dimension Example (cont)

• No five instances can be shattered since there can be at 

most 4 distinct extreme points (min and max on each of the 

2 dimensions) and these 4 cannot be included without 

including any possible 5th point.

• Therefore VC(H) = 4

• Generalizes to axis-parallel hyper-rectangles (conjunctions 

of intervals in n dimensions): VC(H)=2n.
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Probably Approximately Correct (PAC) 

Learning

• The only reasonable expectation of a learner 

is that with high probability it learns a close 

approximation to the target concept.

• In the PAC model, we specify two small 

parameters, ε and δ, and require that with 

probability at least (1  δ) a system learn a 

concept with error at most ε.
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Formal Definition of PAC-Learnable

• Consider a concept class C defined over an 

instance space X containing instances of length n, 

and a learner, L, using a hypothesis space, H. C is 

said to be PAC-learnable by L using H iff for all 

cC, distributions D over X, 0<ε<0.5, 0<δ<0.5;  

learner L by sampling random examples from 

distribution D, will with probability at least 1 δ

output a hypothesis hH such that errorD(h) ε, in 

time polynomial in 1/ε, 1/δ, n and size(c).
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Issues of PAC Learnability

• The computational limitation also imposes a 
polynomial constraint on the training set size, 
since a learner can process at most polynomial 
data in polynomial time.

• How to prove PAC learnability:
– First prove sample complexity of learning C using H is 

polynomial.

– Second prove that the learner can train on a 
polynomial-sized data set in polynomial time.

• To be PAC-learnable, there must be a hypothesis 
in H with arbitrarily small error for every concept 
in C, generally C  H.



Probably Approximately Correct (PAC) 

Learning (2)
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 How many training examples N should we have, such that 

with probability at least 1 ‒ δ, h has error at most ε?

(Blumer et al., 1989)

 Each strip is at most ε/4

 Pr that we miss a strip 1‒ ε/4

 Pr that N instances miss a strip (1 ‒ ε/4)N

 Pr that N instances miss 4 strips 4(1 ‒ ε/4)N

 (1 ‒ x)≤exp( ‒ x) → 4(1 ‒ ε/4)N ≤ δ

 4exp(‒ εN/4) ≤ δ and N ≥ (4/ε)log(4/δ)
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 Therefore, provided that we take at least (4/ε)log(4/δ) 

independent examples from C and use the tightest 

rectangle as our hypothesis h, with confidence 

probability at least 1 − δ, a given point will be 

misclassified with error probability at most ε. 

 We can have arbitrary large confidence by decreasing 

δ and arbitrary small error by decreasing ε, and we 

see in above equation that the number of examples is 

a slowly growing function of 1/ε and 1/δ, linear and 

logarithmic, respectively.

N ≥ (4/ε)log(4/δ)



Noise and Model Complexity
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 Imprecision in recording the input attributes

 Errors in labeling the

data points

 May be additional 

attributes, which we 

have not taken into

account,
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Use the simpler one because

 Simpler to use (lower computational complexity)

 Easier to train (lower space complexity)

 Easier to explain (more interpretable)

 Generalizes better (lower variance - Occam’s razor)

 Note: A simpler model has more bias. Finding the optimal 
model corresponds to minimizing both the bias and the 
variance.

 Occam’s razor: Simpler explanations are more plausible and 
any unnecessary complexity should be shaved off.

Noise and Model Complexity



Multiple Classes, Ci ,i=1,...,K
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Train hypotheses 

hi(x), i =1,...,K:

The total empirical error



Regression
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 In classification, given an input, the output that is 

generated is Boolean; it is a yes/no answer.

 If the output is continuous and there is no noise the 

task is interpolation.

 In regression, there is noise added to the output of 

the unknown function

 The explanation for noise is that there are extra 

hidden variables that we cannot observe

zt denote those hidden variables.
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We would like to approximate the output by our model g(x).

The empirical error is:

If g(x) is linear:

Error minimization



Model Selection & Generalization
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 Learning is an ill-posed problem when; data is not 
sufficient to find a unique solution.

 Exp: There are 2d possible ways to write d binary 
values and therefore, with d inputs, the training set 
has at most 2d examples.

 After seeing N example cases, there remain 22d −N

possible functions.

 The need for inductive bias, assumptions about H; 
make some extra assumptions to have a unique 
solution with the data we have.



27

 Assuming the shape of a rectangle is one inductive 

bias, and then the rectangle with the largest margin 

for example, is another inductive bias.

 Generalization: 

 How well a model performs on new data

 Overfitting: H more complex than C or f 

 Underfitting: H less complex than C or f



Underfitting and Overfitting

Overfitting

Underfitting: when model is too simple, both training and test errors are large 

Complexity of a Decision
Tree = number of nodes 
it uses

Underfitting

Complexity of the classification function

Overfitting: when model is too complex and test errors are large although 
training errors are small.



Triple Trade-Off
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 There is a trade-off between three factors 

(Dietterich, 2003):

1. Complexity of H, c(H),

2. Training set size, N, 

3. Generalization error, E, on new data

 As N , E ↓

 As c(H)  , first E ↓ and then E 



Cross-Validation

 Two errors: training error, and testing error usually 

called generalization error. Typically, the training 

error is smaller than the generalization error.

 To estimate generalization error, we need data 

unseen during training. We could split the data as

 Training set (50%)

 Validation set (25%)optional, for selecting ML algorithm 

parameters (e.g. model complexity)

 Test (publication) set (25%)

 Resampling when there is few data

Error on new examples; actually the 
testing error is used as an estimation
of the generalization error!
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Dimensions of a Supervised Learner
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The sample is independent and identically 
distributed (iid); the ordering is not important 
and all instances are drawn from the same joint 
distribution p(x,r). 

The aim is to build a good and useful approximation to rt

using the model g(xt |θ).

Three following decisions we must make:

1. Model:  |  g x θ

where g(·) is the model, x is the input, and θ are the 
parameters.
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2. Loss function: The approximation error, or loss, is the sum of 

losses over the individual instances

3. Optimization procedure: To find θ∗ that minimizes the total 

error

    |X , |  t t

t

E L r g  x

 * arg min |X  E


 

The model (inductive bias), or H, is fixed by the machine 
learning system designer based on his or her knowledge of 
the application and the hypothesis h is chosen (parameters 
are tuned) by a learning algorithm using the training set, 
sampled from p(x,r).

Remark: This procedure is typical for Parametric approaches to 

supervised learning; Non-parametric approaches work differently!
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 For this setting to work well, the following 
conditions should be satisfied:

 The hypothesis class of g(·) should be large enough, 
that is, have enough capacity, to include the unknown 
function that generated the data that is represented in X
in a noisy form.

 There should be enough training data to allow us to 
pinpoint the correct (or a good enough) hypothesis 
from the hypothesis class.

 We should have a good optimization method that finds 
the correct hypothesis given the training data.

Conditions 


