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Learning a Class from Examples
24
o Class C of a “family car”

o Prediction: Is car x a family car?

o Knowledge extraction: What do people expect from a
family car?

- Output:

Positive (+) and negative (—) examples
o Input representation:

X, price, X, : engine power
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Family Car Decision Tree




Hypothesis class H

H, the hypothesis class (the set of rectangles) from which we believe C is drawn

power

A 1if h says X Is positive
h(x)=4 . _ :
0 if h says x Is negative
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Generalization: how well our hypothesis will correctly classify

future examples that are not part of the training set.




S, G, and the Version Space

e
The most specific hypothesis, S, the tightest
rectangle that includes all the positive

examples and none of the negative examples

-

The most general hypothesis, G

x_: Engine power

2

h € H, between S and G is
consistent and make up the

version space (Mitchell, 1997)




Margin

Choose h with largest
margin. It seems intuitive to
choose h halfway between S =
and G; this is to increase the -
margin, which is the
distance between the margin
boundary and the instances
closest to It.

o Engine power

o

¥;* Price



Doubt

In some applications, a wrong decision may be
very costly and In such a case, we can say that any
Instance that falls in between S and G Is a case of
doubt, which we cannot label with certainty due to
lack of data. In such a case, the system rejects the
Instance and defers the decision to a human expert.



Shattering Instances

« A hypothesis space Is said to shatter a set of instances iff
for every partition of the instances into positive and
negative, there is a hypothesis that produces that partition.

 For example, consider 2 instances described using a single
real-valued feature being shattered by intervals.
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Shattering Instances (cont)

 But 3 Instances cannot be shattered by a single interval.

| X Y R R
I | | g X’y’z
|_| X |,z
— y | xz
| Xy | z

| X,Y,Z
| | ve |
— 2 | xy
Cannot do X2 |y

» Since there are 2™ partitions of m instances, in order for H
to shatter instances: |[H| >2™.
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VC Dimension

An unbiased hypothesis space shatters the entire instance space.

The larger the subset of X that can be shattered, the more
expressive the hypothesis space is, i.e. the less biased.

The Vapnik-Chervonenkis dimension, VC(H) of hypothesis
space H defined over instance space X is the size of the largest
finite subset of X shattered by H. If arbitrarily large finite
subsets of X can be shattered then VC(H) = «

If there exists at least one subset of X of size d that can be
shattered then VC(H) > d. If no subset of size d can be
shattered, then VC(H) < d.

For a single intervals on the real line, all sets of 2 instances can
be shattered, but no set of 3 instances can, so VC(H) = 2.

Since [H| > 2™, to shatter m instances, VC(H) < log,|H|
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VC Dimension

N points can be labeled in 2N ways as +/-

 H shatters N If there exists h € H consistent for

any of these.

That is, any learning problem

definable by N examples can be
learned with no error by a g
hypothesis drawn from H.
The maximum number of
points that can be shattered by A s alignec rectanglg
H is called the Vapnik- shatters 4 points only !

Chervonenkis (VC) dimension. 13




VC Dimension Example

- Consider axis-parallel rectangles in the real-plane, i.e.
conjunctions of intervals on two real-valued features.
Some 4 instances can be shattered.
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VC Dimension Example (cont)

No five instances can be shattered since there can be at
most 4 distinct extreme points (min and max on each of the
2 dimensions) and these 4 cannot be included without
including any possible 5" point.

1

Therefore VC(H) =4
Generalizes to axis-parallel hyper-rectangles (conjunctions
of intervals in n dimensions): VC(H)=2n.
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Probably Approximately Correct (PAC)
Learning

* The only reasonable expectation of a learner
IS that with high probability it learns a close
approximation to the target concept.

* In the PAC model, we specify two small
parameters, € and o, and require that with
probability at least (1 — 9) a system learn a
concept with error at most «.
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Formal Definition of PAC-Learnable

 Consider a concept class C defined over an
Instance space X containing instances of length n,
and a learner, L, using a hypothesis space, H. C Is
said to be PAC-learnable by L using H iff for all
ceC, distributions D over X, 0<e<0.5, 0<6<0.5;
learner L by sampling random examples from
distribution D, will with probability at least 1- o
output a hypothesis heH such that errorg(h)< ¢, In
time polynomial in 1/g, 1/5, n and size(c).
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Issues of PAC Learnability

- The computational limitation also imposes a
polynomial constraint on the training set size,
since a learner can process at most polynomlal
data in polynomial time.

* How to prove PAC learnability:

— First prove sample complexity of learning C using H is
polynomial.

— Second prove that the learner can train on a
polynomial-sized data set in polynomial time.

» To be PAC-learnable, there must be a hypothesis
In H with arbitrarily small error for every concept
In C, generally C c H.
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Probably Approximately Correct (PAC)
Learning (2)

How many training examples N should we have, such that
with probability at least 1 — 8, h has error at most &?

(Blumer et al., 1989)

Each strip 1s at most /4 e -
Pr that we miss a strip 1- /4 o

Pr that N instances miss a strip (1 —e/4)N [ . o
Pr that N instances miss 4 strips 4(1 — e/4)N

D

O

(1 - x)<exp(—X) > 4(1 —e/4)N<
dexp(—eN/4) <6 and N > (4/¢)log(4/0)



N = (4/¢)log(4/d)

Therefore, provided that we take at least (4/€)log(4/9)
Independent examples from C and use the tightest
rectangle as our hypothesis h, with confidence
probability at least 1 — 9, a given point will be
misclassified with error probability at most «.

We can have arbitrary large confidence by decreasing
0 and arbitrary small error by decreasing ¢, and we
see in above equation that the number of examples Is
a slowly growing function of 1/¢ and 1/9, linear and
logarithmic, respectively.



Noise and Model Complexity

Imprecision in recording the input attributes
Errors in labeling the -

-

data points
May be additional e S
attributes, which we - T e {i |
©
have not taken into ® 5 |
= s $ 6
account, .~ e




Noise and Model Complexity

Use the simpler one because
Simpler to use (lower computational complexity)
Easier to train (lower space complexity)
Easier to explain (more interpretable)
Generalizes better (lower variance - Occam’s razor)

Note: A simpler model has more bias. Finding the optimal
model corresponds to minimizing both the bias and the
variance.

Occam’s razor: Simpler explanations are more plausible and
any unnecessary complexity should be shaved off.



Engine power

Multiple Classes, C; ,1=1,...,K
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Regression

In classification, given an input, the output that is
generated is Boolean; it is a yes/no answer.

If the output is continuous and there is no noise the

task is interpolation. x = {xt,rt}N rreR, ri=f (xt)

t=1
In regression, there is noise added to the output of
the unknown function ' = f (Xt)+5

The explanation for noise is that there are extra
hidden variables that we cannot observe

r‘:f*(xt,zt)

7! denote those hidden variables.



Regression

We would like to approximate the output by our model g(x).

The empirical error is: - __________ ? S _________ ]

E(9|X)=%i[rt—g(xt)]2 ------ -

t=1

s 4t m e e e el e m e e e N e e e m A mmm e d

If g(x) is linear:

\ i i i i . |
E (Wl,wo|x):NiZ[rt —(Wlxt +WO)} * > (x) —Nx?
1 -' t
tError minimization — Wy =T =W, X




Model Selection & Generalization

Learning is an ill-posed problem when data is not
sufficient to find a unigue solution.

Exp: There are 29 possible ways to write d binary
values and therefore, with d Inputs, the training set
has at most 29 examples.

After seeing N example cases, there remain 2
possible functions.

The need for inductive bias assumptions about H;
make some extra assumptions to have a unigue
solution with the data we have.

od N



Assuming the shape of a rectangle Is one inductive
bias, and then the rectangle with the largest margin
for example, Is another inductive bias.

Generalization:

How well a model performs on new data
Overfitting: H more complex than C or f
Underfitting: H less complex than C or f



Underfitting and Overfitting
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Complexity of the classification function

Underfitting: when model is too simple, both training and test errors are large

5 1

Overfitting: when model is too complex and test errors are large although
training errors are small.



Triple Trade-Oft

There Is a trade-off between three factors
(Dietterich, 2003):

Complexity of H, c(H),

Training set size, N,

Generalization error, E, on new data

AsNT, E |
Asc(H) T, firstE | and then E T



. . Error on new examples; actually the
C rOSS _Val I d atl O n testing error is used as an estimation
of the generalization error!
Two errors: training error, and testing error usually

called generalization error. Typically, the training
error is smaller than the generalization error.

To estimate generalization error, we need data
unseen during training. We could split the data as
Training set (50%)

Validation set (25%)->optional, for selecting ML algorithm
parameters (e.g. model complexity)

Test (publication) set (25%)
Resampling when there Is few data
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Dimensions of a Supervised Learner

y  The sample is independent and identically
X = {Xt ,rt} distributed (iid); the ordering is not important
and all instances are drawn from the same joint
distribution p(x,r).

The aim is to build a good and useful approximation to r'
using the model g(x' |0).

Three following decisions we must make:
1. Model:  g(x0)

where g(+) is the model, X is the input, and 0 are the
parameters.
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The model (inductive bias), or H, is fixed by the machine
learning system designer based on his or her knowledge of
the application and the hypothesis & is chosen (parameters
are tuned) by a learning algorithm using the training set,
sampled from p(x,r).

2. Loss function: The approximation error, or loss, is the sum of
losses over the individual instances

E(6’|X):ZL(rt,g(xt|9))

3. Optimization procedure: To find 6* that minimizes the total

error . _
6" =arg min E (61X)

Remark: This procedure is typical for Parametric approaches to
supervised learning; Non-parametric approaches work differently!



Conditions

For this setting to work well, the following
conditions should be satisfied:

The hypothesis class of g(-) should be large enough,
that is, have enough capacity, to include the unknown
function that generated the data that Is represented in X
In a noisy form.

There should be enough training data to allow us to
pinpoint the correct (or a good enough) hypothesis
from the hypothesis class.

We should have a good optimization method that finds
the correct hypothesis given the training data.



