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Introduction
2

 Questions:

 Assessment of the expected error of a learning algorithm: Is 

the error rate of 1-NN less than 2%?

 Comparing the expected errors of two algorithms: Is k-NN 

more accurate than MLP ?

 Training/validation/test sets

 Resampling methods: K-fold cross-validation



Algorithm Preference
3

 Criteria (Application-dependent):

 Misclassification error, or risk (loss functions)

 Training time/space complexity

 Testing time/space complexity

 Interpretability

 Easy programmability

 Cost-sensitive learning



Factors and Response

 Response function based 
on output to be 
maximized

 Depends on controllable 
factors

 Uncontrollable factors 
introduce randomness

 Find the configuration of 
controllable factors that 
maximizes response and 
minimally affected by 
uncontrollable factors
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Strategies of Experimentation
5

Response surface design for approximating  and maximizing 

the response function in terms of the controllable factors

How to search the factor space?



Guidelines for ML experiments
6

A. Aim of the study

B. Selection of the response variable

C. Choice of factors and levels

D. Choice of experimental design

E. Performing the experiment

F. Statistical Analysis of the Data

G. Conclusions and Recommendations



 The need for multiple training/validation sets

{Xi,Vi}i: Training/validation sets of fold i

 K-fold cross-validation: Divide X into k, Xi,i=1,...,K

 Ti share K-2 parts

Resampling and 

K-Fold Cross-Validation
7

1 1 1 2 3

2 2 2 1 3

1 2 1

     

    

     

   

K

K

K K K K

    

    

    

V X T X X X

V X T X X X

V X T X X X



5×2 Cross-Validation
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 5 times 2 fold cross-validation (Dietterich, 1998)



Bootstrapping
9

 Draw instances from a dataset with replacement

 Prob that we do not pick an instance after N draws

that is, only 36.8% is new!

11
1 0.368 

N

e
N

 
   

 



Performance Measures
10

 Error rate = # of errors / # of instances = (FN+FP) / N

 Recall = # of found positives / # of positives 

= TP / (TP+FN) = sensitivity = hit rate

 Precision = # of found positives / # of found

= TP / (TP+FP)

 Specificity = TN / (TN+FP)

 False alarm rate = FP / (FP+TN) = 1 - Specificity



ROC Curve
11
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Precision and Recall
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Interval Estimation
14
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 X = { xt }t where xt ~ N ( μ, σ2)

 m ~ N ( μ, σ2/N)

100(1- α) percent

confidence interval
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When σ2 is not known:
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100(1- α) percent one-sided

confidence interval



 Reject a null hypothesis if not supported by the sample 
with enough confidence

X = { xt }t where xt ~ N ( μ, σ2)

H0: μ = μ0 vs. H1: μ ≠ μ0

Accept H0 with level of significance α if μ0 is in the 

100(1- α) confidence interval

Two-sided test

Hypothesis Testing
16
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 One-sided test: H0: μ ≤  μ0 vs. H1: μ > μ0

Accept if

 Variance unknown: Use t, instead of z

Accept H0: μ = μ0 if 
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Assessing Error: H0:p ≤ p0 vs. H1:p > p0

18

 Single training/validation set: Binomial Test

If error prob is p0, prob that there are e errors or less 

in N validation trials is

1- α

Accept if this prob is less than 1- α

N=100, e=20
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Normal Approximation to the Binomial
19

 Number of errors X is approx N with mean Np0 and 

var Np0(1-p0)

Accept if this prob for X = e is 

less than z1-α

1- α
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 Multiple training/validation sets

 xt
i = 1 if instance t misclassified on fold i

 Error rate of fold i:

 With m and s2 average and var of pi , we accept p0 or 
less error if

is less than tα,K-1

Paired t Test
20
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 Single training/validation set: McNemar’s Test

 Under H0, we expect e01= e10=(e01+ e10)/2

Comparing Classifiers: H0:μ0=μ1 vs. 

H1:μ0≠μ1
21
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K-Fold CV Paired t Test
22
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 Use K-fold cv to get K training/validation folds

 pi
1, pi

2: Errors of classifiers 1 and 2 on fold i

pi = pi
1 – pi

2 : Paired difference on fold i

 The null hypothesis is whether pi has mean 0



5×2 cv Paired t Test
23
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 Use 5×2 cv to get 2 folds of 5 tra/val replications 

(Dietterich, 1998) 

 pi
(j) :  difference btw errors of 1 and 2 on fold j=1, 2 

of replication i=1,...,5

Two-sided test: Accept H0: μ0 = μ1 if in (-tα/2,5,tα/2,5) 

One-sided test:  Accept H0: μ0  ≤ μ1 if < tα,5



5×2 cv Paired F Test
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Two-sided test: Accept H0: μ0 = μ1 if < Fα,10,5



Comparing L>2 Algorithms: 

Analysis of Variance (Anova)
25

LH   210 :

 Errors of L algorithms on K folds

 We construct two estimators to σ2 . 

One is valid if H0 is true, the other is always valid.

We reject H0 if the two estimators disagree. 

 2~ , , 1,..., ,   1,...,  ij jX j L i K   N
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ANOVA table
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If ANOVA rejects, we do pairwise posthoc tests
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Comparison over Multiple Datasets
29

 Comparing two algorithms: 

Sign test: Count how many times A beats B over N
datasets, and check if this could have been by chance if 
A and B did have the same error rate

 Comparing multiple algorithms

Kruskal-Wallis test: Calculate the average rank of all 
algorithms on N datasets, and check if these could have 
been by chance if they all had equal error

If KW rejects, we do pairwise posthoc tests to find 
which ones have significant rank difference



 Instead of testing using a single performance 

measure, e.g., error, use multiple measures for 

better discrimination, e.g., [fp-rate,fn-rate]

 Compare p-dimensional distributions

 Parametric case: Assume p-variate Gaussians

Multivariate Tests
30



Multivariate Pairwise Comparison
31

 Paired differences:

 Hotelling’s multivariate T2 test 

 For p=1, reduces to paired t test



Multivariate ANOVA
32

 Comparsion of L>2 algorithms


