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Introduction

- Questions:

o Assessment of the expected error of a learning algorithm: Is
the error rate of 1-NN less than 2%7?

o Comparing the expected errors of two algorithms: Is k-NN
more accurate than MLP ?

o Training/validation/test sets
o Resampling methods: K-fold cross-validation



Algorithm Preference

B I
o Criteria (Application-dependent):
o Misclassification error, or risk (loss functions)
o Training time/space complexity
o Testing time/space complexity
o Interpretability
o Easy programmability

- Cost-sensitive learning



Factors and Response

Response function based Controllable
on output to be factors
maximized l l l

Depends on controllable
factors

Uncontrollable factors
Introduce randomness

Find the configuration of
controllable factors that T T
maximizes response and

minimally affected by Uﬂﬂglltfﬂllﬂble
uncontrollable factors actors

Input Output

—_— —————




Strategles of Experimentation

How to search the factor space?

Factor2

-

Factor]

(b) One factor at a time () Factorial design

(a) Best guess

Response surface design for approximating and maximizing
the response function in terms of the controllable factors



Guidelines for ML experiments

64
~ Alm of the study

5. Selection of the response variable

c. Choice of factors and levels

n. Choice of experimental design

= Performing the experiment

- Statistical Analysis of the Data

. Conclusions and Recommendations



Resampling and
K-Fold Cross-Validation

o The need for multiple training/validation sets
{X;,V;};: Training/validation sets of fold |
- K-fold cross-validation: Divide X into k, X;,i1=1,...,K

V=X T, =X,uX,u---UX,
V=X, T,=X,uX,u---UX,

V.o=X, T.=XuX,u---UX,_,

o T, share K-2 parts



5x2 Cross-Validation

5 times 2 fold cross-validation (Dietterich, 1998)
T=X" V=X
T,- X7 V=X
T=X{ V=X
T,- X0 V= xP




Bootstrapping

- Draw Instances from a dataset with replacement
- Prob that we do not pick an instance after N draws

1 N
(1——) ~e" =0.368
N

that is, only 36.8% Is new!



Performance Measures

Predicted class
True Class Yes No
Yes TP: True Positive | FN: False Negative
No FP: False Positive | TN: True Negative

Error rate = # of errors / # of instances = (FN+FP) / N
Recall = # of found positives / # of positives

= TP/ (TP+FN) = sensitivity = hit rate
Precision = # of found positives / # of found

=TP/ (TP+FP)
Specificity = TN/ (TN+FP)
False alarm rate = FP / (FP+TN) = 1 - Specificity



ROC Curve
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False alarm rate: |FP|/(|FP|+|TN]) Specificity = 1-False alarm rate
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tp-rate

tp-rate

fp-rate

(a) Example ROC curve

o

(b) Different ROC
curves for different
classifiers

fp-rate



Precision and Recall
13|

. a
retrieved relevant Precision:
records records a + b
R L
Recall:
a c
(a) Precision and recall
R

Q)

(b) Precision =1 (¢)Recall =1



Interval Estimation
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X ={xt} where xt*~ N (u, ¢°)

m~ N (x«, ¢°/N)

N(m_“)~z

O

~1.96 <N (m- )<1.96}:0.95

P

N

PIm-1.96—2_ < u< m+1.96i} ~0.95

JN JN

P<m <pu<m+z,

/2\/7

100(1- a) percent

G} l-«o
2 T (=17
\/ﬁ confidence interval
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P<(\/N(m
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Pim-z,

.

2

O

— ) <1.64} ~0.95

PIm-1.64-2_ } —0.95

<
N
O

Ww}:l_a

When - i1s not known:

$2=3"(x'~m) /(N -1)

t

S
P {m _taIZ,N—l W

100(1- a) percent one-sided
confidence interval




Hypothesis Testing

o Reject a null hypothesis if not supported by the sample
with enough confidence

X ={xt}where xt~ N (u, 6?)
Ho: 1= po Vs Hyl it # g
Accept H, with level of significance « If x4 Is In the
100(1- &) confidence interval
\/ﬁ(m_ﬂo)
o)

Two-sided test

< (_Za/2’ Za/Z)
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Decision
Truth Accept Reject
True Correct Type I error
False | Type Il error | Correct (Power)

One-sided test: Hy: 1 < g vs. Hy: > g

Accept It /N (m-4,)

O

e (-»,2,)

Variance unknown: Use t, instead of z
Accept Hy: o = g I

\/N(m_,uo)

S

< (_taIZ,N—l’taIZ,N—l)




Assessing Error: Hy:p < pg vs. Hy:p > p,
T

o Single training/validation set: Binomial Test

If error prob is p,, prob that there are e errors or less
In N validation trials Is

' P{Xﬁe}=i['\-']r’o"(1— )"

i1\ J

Accept if this prob is less than 1-

N=100, e=20




Normal Approximation to the Binomial
vl

= Number of errors X is approx N with mean Np, and
var Npy(1-py)
- X —Np,

il | JNp, (1= py)

Accept if this prob for X =e is
less than z,_,

~Z

||||||
mmmmmmmmm




Paired t Test

o Multiple training/validation sets
o X% =1 i1f instance t misclassified on fold i

o Error rate of fold 1: ZN "

_ t=1 "1
P; TN

o With m and s? average and var of p; , we accept p, or
less error if

JK(m-p,)
S

tK—l

Islessthant, .,



Comparing Classifiers: Hy:pp=p, VS.

H,:uo7 1,
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Single training/validation set: McNemar’s Test

epo: Number of examples
misclassified by both

ep1: Number of examples
misclassified by 1 but not 2

¢10: Number of examples

misclassified by 2 but not 1

¢11: Number of examples
correctly classified by both

Under H,, we expect ey,;= €,4=(€5;+ €47)/2

(|601 _elo| _1)2

e01 T e10

Accept if <X |

2
X




K-Fold CV Paired t Test
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Use K-fold cv to get K training/validation folds
p;t, pi%: Errors of classifiers 1 and 2 on fold i

p; = p;it — p;° : Paired difference on fold |

The null hypothesis is whether p; has mean 0
Hy: =0 vs. Hy: u#0

ZiKzl P g2 Zlel( Pi — m)2

m =
K K-1

JK (m-0 K - T
(S ) _ \/_s M _¢ . Acceptifin (“tuszksrturoks )




5x2 cv Paired t Test

o Use 5%2 cv to get 2 folds of 5 tra/val replications
(Dietterich, 1998)

0 pi : difference btw errors of 1 and 2 on fold j=1, 2
of repllcatlon 1=1,...,.5

b =(p+p?)12  st=(p"-p) +(p”-p)

Two-sided test: Accept Hy: 1o = 1y i in (o0 55ty 5)
One-sided test: Accept Hy: gty <y if <t



5x2 cv Paired F Test

A\ 2
S ()
5
22i=1 Si2

Two-sided test: Accept Hy: g = U, if <Fy 05

- |:10,5



Comparing L>2 Algorithms:

. Analxsis of Variance SAnovaz

Hotah =t ==4
o Errors of L algorithms on K folds
Xy ~N(,0°),j=L...L, i=1..K
= We construct two estimators to o2 .
One is valid If H, Is true, the other is always valid.
We reject H, If the two estimators disagree.
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If H, Is true:

m. —ixij ~N(,u 0'2/K)
” ,
Z j=1 ] 52 — Zj(mi _m)2

L-1
Thus an estimator of o is K -S?, namely,

Z( j m)2~XL2_1 SSbEKZ(mj—m)2

j 02 / K
So when H, Is true, we have

2
XLl

G
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Regardless of H, our second estimator to o is the
average of group variances sz:

—m.)2

2 ZiKzl(xij J R L ) .
R ° :ZT:ZJ_:Z C(K-1)
ss\/vEZZ(xij—mj)2

SZ
(-1 2-xz, Sox;

L(K-1)

/SSb/a SSW/G SSb/(L-1)
. L-1 SSW/( (K-1)) L-LL(K-)

Ho =1, = _:uLIf<FL1L(K1)




ANOVA table

Source of Sum of Degrees of Mean
variation squares freedom square Fo
Between SSp =
groups K> ;j(mj—m)? L-1 MSp = % ﬂgﬁ
Within SSy =
groups | 3;3i(Xij—mj)? | LIK=1) | MSy = 25
Total SSt =
>iYiXijj—m? | L-K-1

If ANOVA rejects, we do pairwise posthoc tests
Hotpy =0 VSH 1 #

c_mom,

\/E—O' - tL(K—l)




Comparison over Multiple Datasets

Comparing two algorithms:

Sign test: Count how many times A beats B over N
datasets, and check if this could have been by chance if
A and B did have the same error rate

Comparing multiple algorithms

Kruskal-Wallis test: Calculate the average rank of all
algorithms on N datasets, and check if these could have
been by chance if they all had equal error

If KW rejects, we do pairwise posthoc tests to find
which ones have significant rank difference



Multivariate Tests

Instead of testing using a single performance
measure, e.g., error, use multiple measures for

better discrimination, e.g., [fp-rate,fn-rate]
Compare p-dimensional distributions
Parametric case: Assume p-variate Gaussians

Ho :py = pp vs. Hy @ py # [y



Multivariate Pairwise Comparison

Paired differences: di = x1i — X2
Ho:pu;=0vs.Hy :u; #0
Hotelling’s multivariate T2 test

T'* =Km'S 'm

For p=1, reduces to paired t test



Multivariate ANOVA
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- Comparsion of L>2 algorithms

Ho @ Hy=Hp=---=HL VS
Hy, : u, # p, for at least one pair r, s

H = K> (m;-m)(m;—m)’

j=1
L
E = ZZ("U_’"J)("U_"’IJ)T
j=li=1
,  |E|
A= E + H|

1s Wilks’s A distributed with p, L(K—-1),L -1 degrees of freedom



