

Lecture Slides for INTRODUCTION TO MACHINE LEARNING 3RD EDITION

ETHEM ALPAYDIN © The MIT Press, 2014

alpaydin@boun.edu.tr http://www.cmpe.boun.edu.tr/~ethem/i2ml3e CHAPTER 19:

DESIGN AND ANALYSIS OF MACHINE LEARNING EXPERIMENTS

Introduction

□ Questions:

- Assessment of the expected error of a learning algorithm: Is the error rate of 1-NN less than 2%?
- Comparing the expected errors of two algorithms: Is *k*-NN more accurate than MLP ?
- □ Training/validation/test sets
- □ Resampling methods: *K*-fold cross-validation

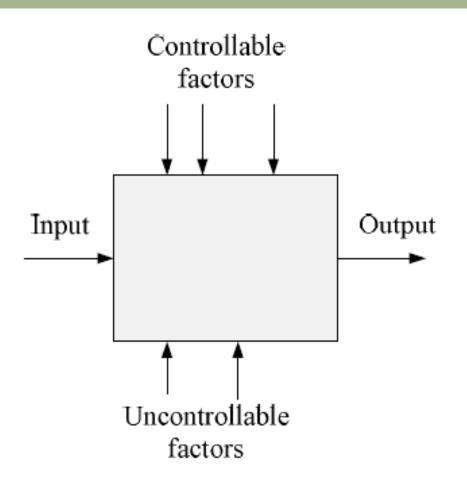
Algorithm Preference

Criteria (Application-dependent):

- Misclassification error, or risk (loss functions)
- Training time/space complexity
- Testing time/space complexity
- Interpretability
- Easy programmability
- Cost-sensitive learning

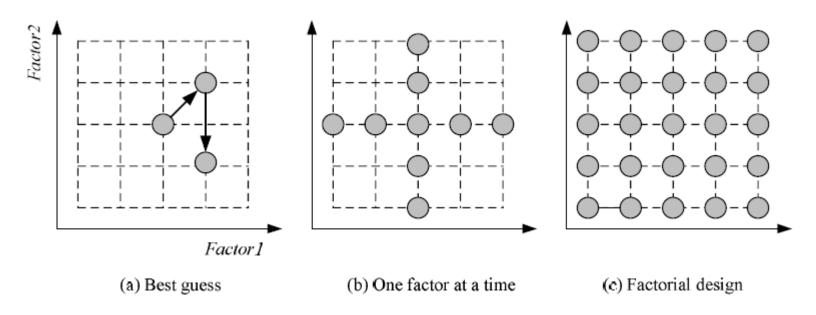
Factors and Response

- Response function based on output to be maximized
- Depends on controllable factors
- Uncontrollable factors introduce randomness
- Find the configuration of controllable factors that maximizes response and minimally affected by uncontrollable factors



Strategies of Experimentation

How to search the factor space?



Response surface design for approximating and maximizing the response function in terms of the controllable factors

Guidelines for ML experiments

- 6
- A. Aim of the study
- B. Selection of the response variable
- c. Choice of factors and levels
- D. Choice of experimental design
- E. Performing the experiment
- F. Statistical Analysis of the Data
- G. Conclusions and Recommendations

Resampling and *K*-Fold Cross-Validation

The need for multiple training/validation sets
 {X_i,V_i}_i: Training/validation sets of fold *i K*-fold cross-validation: Divide X into *k*, X_i,*i*=1,...,K

$$\mathcal{V}_{1} = \mathcal{X}_{1} \quad \mathcal{T}_{1} = \mathcal{X}_{2} \cup \mathcal{X}_{3} \cup \dots \cup \mathcal{X}_{K}$$
$$\mathcal{V}_{2} = \mathcal{X}_{2} \quad \mathcal{T}_{2} = \mathcal{X}_{1} \cup \mathcal{X}_{3} \cup \dots \cup \mathcal{X}_{K}$$
$$\vdots$$
$$\mathcal{V}_{K} = \mathcal{X}_{K} \quad \mathcal{T}_{K} = \mathcal{X}_{1} \cup \mathcal{X}_{2} \cup \dots \cup \mathcal{X}_{K-1}$$

 \Box T_{*i*} share *K*-2 parts

7

5×2 Cross-Validation

8

□ 5 times 2 fold cross-validation (Dietterich, 1998)

$$\begin{aligned} \mathcal{T}_{1} &= \mathcal{X}_{1}^{(1)} & \mathcal{V}_{1} &= \mathcal{X}_{1}^{(2)} \\ \mathcal{T}_{2} &= \mathcal{X}_{1}^{(2)} & \mathcal{V}_{2} &= \mathcal{X}_{1}^{(1)} \\ \mathcal{T}_{3} &= \mathcal{X}_{2}^{(1)} & \mathcal{V}_{3} &= \mathcal{X}_{2}^{(2)} \\ \mathcal{T}_{4} &= \mathcal{X}_{2}^{(2)} & \mathcal{V}_{4} &= \mathcal{X}_{2}^{(1)} \\ \end{aligned}$$

$$\mathcal{T}_{9} = \mathcal{X}_{5}^{(1)}$$
 $\mathcal{V}_{9} = \mathcal{X}_{5}^{(2)}$
 $\mathcal{T}_{10} = \mathcal{X}_{5}^{(2)}$ $\mathcal{V}_{10} = \mathcal{X}_{5}^{(1)}$

Bootstrapping

Draw instances from a dataset *with replacement*Prob that we do not pick an instance after N draws

$$\left(1-\frac{1}{N}\right)^N \approx e^{-1} = 0.368$$

that is, only 36.8% is new!

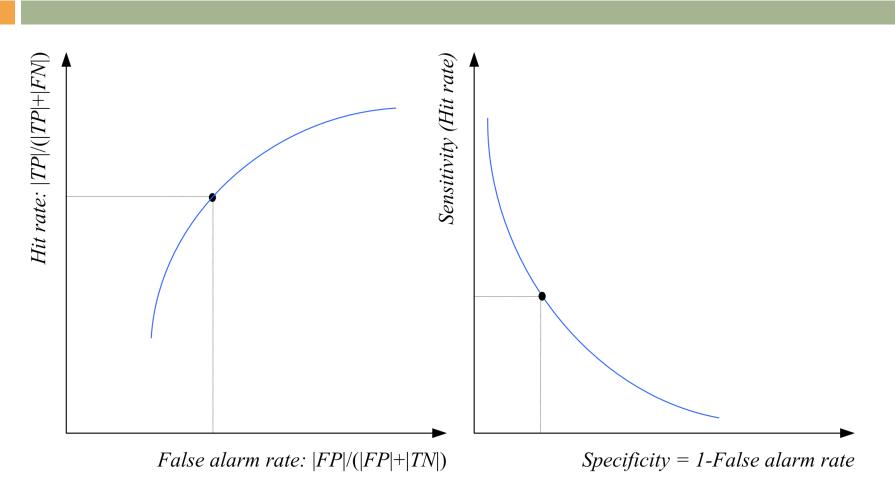
Performance Measures

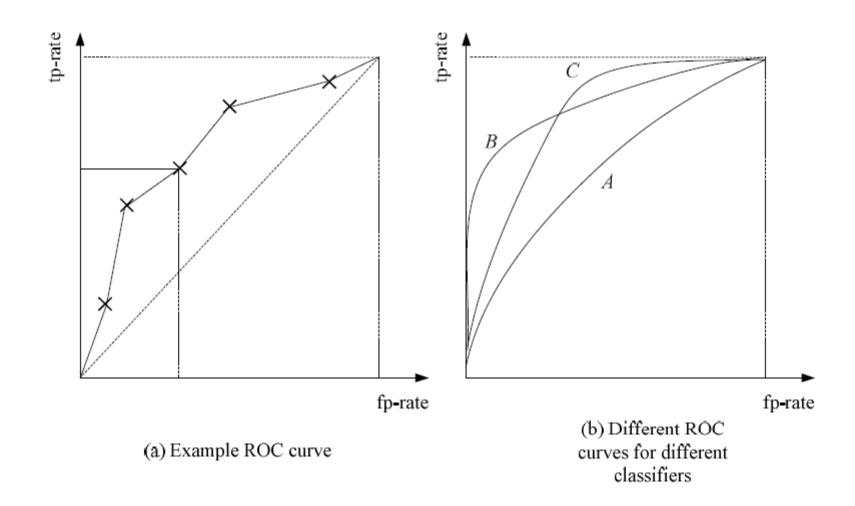
10

	Predicted class		
True Class	Yes	No	
Yes	TP: True Positive	FN: False Negative	
No	FP: False Positive	TN: True Negative	

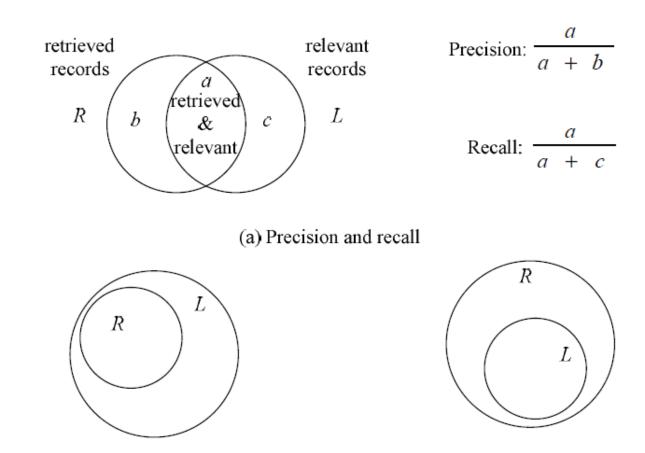
- \Box Error rate = # of errors / # of instances = (FN+FP) / N
- Recall = # of found positives / # of positives = TP / (TP+FN) = sensitivity = hit rate
- □ Precision = # of found positives / # of found = TP / (TP+FP)
- \Box Specificity = TN / (TN+FP)
- □ False alarm rate = FP / (FP+TN) = 1 Specificity

ROC Curve





Precision and Recall



(b) Precision = 1

(c) Recall = 1

Interval Estimation

$$X = \{ x^{t} \}_{t} \text{ where } x^{t} \sim N (\mu, \sigma^{2})$$

$$M \sim N (\mu, \sigma^{2}/N)$$

$$\sqrt{N} \frac{(m-\mu)}{\sigma} \sim Z$$

$$P\left\{-1.96 < \sqrt{N} \frac{(m-\mu)}{\sigma} < 1.96\right\} = 0.95$$

$$P\left\{m-1.96 \frac{\sigma}{\sqrt{N}} < \mu < m+1.96 \frac{\sigma}{\sqrt{N}}\right\} = 0.95$$

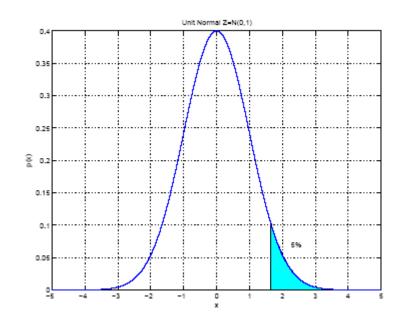
$$P\left\{m-z_{\alpha/2} \frac{\sigma}{\sqrt{N}} < \mu < m+z_{\alpha/2} \frac{\sigma}{\sqrt{N}}\right\} = 1-\alpha$$

$$100(1-\alpha) \text{ percent confidence interval}$$

$$P\left\{\sqrt{N} \frac{(m-\mu)}{\sigma} < 1.64\right\} = 0.95$$
$$P\left\{m-1.64 \frac{\sigma}{\sqrt{N}} < \mu\right\} = 0.95$$
$$P\left\{m-z_{\alpha} \frac{\sigma}{\sqrt{N}} < \mu\right\} = 1-\alpha$$

When σ^2 is not known:

100(1- α) percent one-sided confidence interval



$$S^{2} = \sum_{t} \left(x^{t} - m \right)^{2} / \left(N - 1 \right) \qquad \frac{\sqrt{N} \left(m - \mu \right)}{S} \sim t_{N-1}$$
$$P\left\{ m - t_{\alpha/2, N-1} \frac{S}{\sqrt{N}} < \mu < m + t_{\alpha/2, N-1} \frac{S}{\sqrt{N}} \right\} = 1 - \alpha$$

Hypothesis Testing

16

Reject a null hypothesis if not supported by the sample with enough confidence

X = {
$$x^t$$
 } where $x^t \sim N(\mu, \sigma^2)$
H₀: $\mu = \mu_0$ vs. H₁: $\mu \neq \mu_0$

Accept H_0 with level of significance α if μ_0 is in the

 $100(1 - \alpha)$ confidence interval

$$\frac{\sqrt{N}(m-\mu_0)}{\sigma} \in (-z_{\alpha/2}, z_{\alpha/2})$$

Two-sided test

	Decision		
Truth	Accept	Reject	
True	Correct	Type I error	
False	Type II error	Correct (Power)	

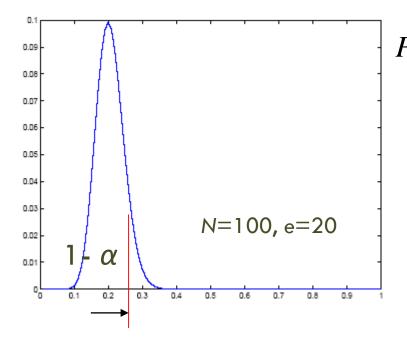
- □ One-sided test: H_0 : $\mu \le \mu_0$ vs. H_1 : $\mu > \mu_0$ Accept if $\frac{\sqrt{N}(m - \mu_0)}{\sigma} \in (-\infty, z_\alpha)$
- □ Variance unknown: Use *t*, instead of *z* Accept H_0 : $\mu = \mu_0$ if $\frac{\sqrt{N}(m - \mu_0)}{\varsigma} \in (-t_{\alpha/2, N-1}, t_{\alpha/2, N-1})$

Assessing Error: $H_0: p \le p_0$ vs. $H_1: p > p_0$

18

□ Single training/validation set: Binomial Test If error prob is p_0 , prob that there are *e* errors or less

in N validation trials is

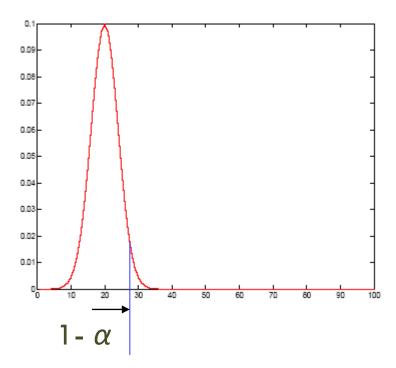


$$P\{X \le e\} = \sum_{j=1}^{e} \binom{N}{j} p_0^{j} \left(1 - p_0^{j}\right)^{N-j}$$

Accept if this prob is less than 1- α

Normal Approximation to the Binomial

□ Number of errors *X* is approx N with mean Np_0 and var $Np_0(1-p_0)$



$$\frac{X - Np_0}{\sqrt{Np_0\left(1 - p_0\right)}} \sim \mathcal{Z}$$

Accept if this prob for X = e is less than $z_{1-\alpha}$

Paired t Test

20

- Multiple training/validation sets
- $\Box x_i^t = 1$ if instance *t* misclassified on fold *i*
- \Box Error rate of fold *i*:

$$p_i = \frac{\sum_{t=1}^{N} x_i^t}{N}$$

- M

□ With *m* and s^2 average and var of p_i , we accept p_0 or less error if

$$\frac{\sqrt{K}\left(m-p_{0}\right)}{S} \sim t_{K-1}$$

is less than $t_{\alpha,K-1}$

Comparing Classifiers: $H_0:\mu_0=\mu_1$ vs. $H_1:\mu_0\neq\mu_1$

□ Single training/validation set: McNemar's Test

<i>e</i> ₀₀ : Number of examples misclassified by both	<i>e</i> ₀₁ : Number of examples misclassified by 1 but not 2
<i>e</i> ₁₀ : Number of examples misclassified by 2 but not 1	<i>e</i> ₁₁ : Number of examples correctly classified by both

□ Under H₀, we expect $e_{01} = e_{10} = (e_{01} + e_{10})/2$

$$\frac{\left(\left|e_{01}-e_{10}\right|-1\right)^{2}}{e_{01}+e_{10}}\sim \chi_{1}^{2}$$

Accept if $< X^2_{\alpha,1}$

21

K-Fold CV Paired t Test

22

□ Use K-fold cv to get K training/validation folds $\square p_i^1, p_i^2$: Errors of classifiers 1 and 2 on fold *i* $p_i = p_i^{1} - p_i^{2}$: Paired difference on fold *i* \square The null hypothesis is whether p_i has mean 0 $H_0: \mu = 0$ vs. $H_0: \mu \neq 0$ $m = \frac{\sum_{i=1}^{K} p_i}{K} \qquad s^2 = \frac{\sum_{i=1}^{K} (p_i - m)^2}{K - 1}$ $\frac{\sqrt{K}(m-0)}{\varsigma} = \frac{\sqrt{K} \cdot m}{\varsigma} \sim t_{K-1} \text{ Accept if in } \left(-t_{\alpha/2,K-1},t_{\alpha/2,K-1}\right)$

5×2 cv Paired t Test

- Use 5×2 cv to get 2 folds of 5 tra/val replications (Dietterich, 1998)
- □ $p_i^{(j)}$: difference btw errors of 1 and 2 on fold *j*=1, 2 of replication *i*=1,...,5

$$\begin{split} \overline{p}_{i} = \left(p_{i}^{(1)} + p_{i}^{(2)}\right) / 2 \qquad s_{i}^{2} = \left(p_{i}^{(1)} - \overline{p}_{i}\right)^{2} + \left(p_{i}^{(2)} - \overline{p}_{i}\right)^{2} \\ \frac{p_{1}^{(1)}}{\sqrt{\sum_{i=1}^{5} s_{i}^{2} / 5}} \sim t_{5} \end{split}$$

Two-sided test: Accept H₀: $\mu_0 = \mu_1$ if in $(-t_{\alpha/2,5}, t_{\alpha/2,5})$ One-sided test: Accept H₀: $\mu_0 \le \mu_1$ if $< t_{\alpha,5}$

5×2 cv Paired F Test

$$\frac{\sum_{i=1}^{5} \sum_{j=1}^{2} \left(p_{i}^{(j)}\right)^{2}}{2 \sum_{i=1}^{5} s_{i}^{2}} \sim F_{10,5}$$

Two-sided test: Accept $H_0: \mu_0 = \mu_1$ if $< F_{\alpha, 10, 5}$

Comparing *L*>2 Algorithms: Analysis of Variance (Anova)

$$H_0: \mu_1 = \mu_2 = \cdots = \mu_L$$

□ Errors of *L* algorithms on *K* folds $X_{ij} \sim \mathcal{N}(\mu_j, \sigma^2), j = 1, ..., L, i = 1, ..., K$

We construct two estimators to σ².
 One is valid if H₀ is true, the other is always valid.
 We reject H₀ if the two estimators disagree.

If H_0 is true :

$$m_{j} = \sum_{i=1}^{K} \frac{X_{ij}}{K} \sim \mathcal{N}\left(\mu, \sigma^{2} / K\right)$$
$$m = \frac{\sum_{j=1}^{L} m_{j}}{L} \qquad S^{2} = \frac{\sum_{j=1}^{L} (m_{j} - m)^{2}}{L - 1}$$

Thus an estimator of σ^2 is $K \cdot S^2$, namely,

$$\hat{\sigma}^{2} = K \sum_{j=1}^{L} \frac{\left(m_{j} - m\right)^{2}}{L - 1}$$

$$\sum_{j} \frac{\left(m_{j} - m\right)^{2}}{\sigma^{2} / K} \sim \chi_{L-1}^{2} \quad SSb \equiv K \sum_{j} \left(m_{j} - m\right)^{2}$$

So when H_0 is true, we have

$$\frac{SSb}{\sigma^2} \sim \chi^2_{L-1}$$

26

Regardless of H_0 our second estimator to σ^2 is the average of group variances S_j^2 :

$$\begin{split} S_{j}^{2} &= \frac{\sum_{i=1}^{K} \left(X_{ij} - m_{j}\right)^{2}}{K - 1} \quad \hat{\sigma}^{2} = \sum_{j=1}^{L} \frac{S_{j}^{2}}{L} = \sum_{j} \sum_{i} \frac{\left(X_{ij} - m_{j}\right)^{2}}{L(K - 1)} \\ SSw &\equiv \sum_{j} \sum_{i} \left(X_{ij} - m_{j}\right)^{2} \\ \left(K - 1\right) \frac{S_{j}^{2}}{\sigma^{2}} \sim \chi_{K-1}^{2} \quad \frac{SSw}{\sigma^{2}} \sim \chi_{L(K-1)}^{2} \\ \left(\frac{SSb / \sigma^{2}}{L - 1}\right) / \left(\frac{SSw / \sigma^{2}}{L(K - 1)}\right) = \frac{SSb / (L - 1)}{SSw / (L(K - 1))} \sim F_{L-1, L(K-1)} \\ H_{0} : \mu_{1} = \mu_{2} = \dots = \mu_{L} \text{ if } < F_{\alpha, L-1, L(K-1)} \end{split}$$

ANOVA table

Source of	Sum of	Degrees of	Mean	
variation	squares	freedom	square	F_0
Between	$SS_b \equiv$			
groups	$K\sum_j (m_j - m)^2$	L-1	$MS_b = \frac{SS_b}{L-1}$	$\frac{MS_b}{MS_w}$
Within	$SS_w \equiv$			
groups	$\sum_{j} \sum_{i} (X_{ij} - m_j)^2$	L(K-1)	$MS_w = \frac{SS_w}{L(K-1)}$	
Total	$SS_T \equiv$			
	$\sum_j \sum_i (X_{ij} - m)^2$	$L \cdot K - 1$		

If ANOVA rejects, we do pairwise posthoc tests $H_0: \mu_i = \mu_j \text{ vs } H_1: \mu_i \neq \mu_j$

$$t = \frac{m_i - m_j}{\sqrt{2}\sigma_w} \sim t_{L(K-1)}$$

Comparison over Multiple Datasets

□ Comparing two algorithms:

Sign test: Count how many times *A* beats *B* over *N* datasets, and check if this could have been by chance if A and B did have the same error rate

Comparing multiple algorithms

Kruskal-Wallis test: Calculate the average rank of all algorithms on N datasets, and check if these could have been by chance if they all had equal error

If KW rejects, we do pairwise posthoc tests to find which ones have significant rank difference

Multivariate Tests

- 30
- Instead of testing using a single performance measure, e.g., error, use multiple measures for better discrimination, e.g., [fp-rate,fn-rate]
- □ Compare *p*-dimensional distributions
- □ Parametric case: Assume *p*-variate Gaussians

 $H_0: \boldsymbol{\mu}_1 = \boldsymbol{\mu}_2 \text{ vs. } H_1: \boldsymbol{\mu}_1 \neq \boldsymbol{\mu}_2$

Multivariate Pairwise Comparison

31

□ Paired differences: $d_i = x_{1i} - x_{2i}$

$$H_0$$
: $\boldsymbol{\mu}_d = \mathbf{0}$ vs. H_1 : $\boldsymbol{\mu}_d \neq \mathbf{0}$

Hotelling's multivariate T² test
 T'² = Km^TS⁻¹m
 For p=1, reduces to paired *t* test

Multivariate ANOVA

 \Box Comparison of *L*>2 algorithms

$$H_0 : \boldsymbol{\mu}_1 = \boldsymbol{\mu}_2 = \cdots = \boldsymbol{\mu}_L \text{ vs.}$$

$$H_1 : \boldsymbol{\mu}_r \neq \boldsymbol{\mu}_s \text{ for at least one pair } r, s$$

$$\mathbf{H} = K \sum_{j=1}^{L} (\boldsymbol{m}_j - \boldsymbol{m}) (\boldsymbol{m}_j - \boldsymbol{m})^T$$

$$\mathbf{E} = \sum_{j=1}^{L} \sum_{j=1}^{K} (\boldsymbol{x}_{ij} - \boldsymbol{m}_j) (\boldsymbol{x}_{ij} - \boldsymbol{m}_j)^T$$

$$\Lambda' = \frac{|\mathbf{E}|}{|\mathbf{E} + \mathbf{H}|}$$

j=1 i=1

is Wilks's Λ distributed with p, L(K-1), L-1 degrees of freedom