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Kernel Machines
2

 Discriminant-based: No need to estimate densities 

first

 Define the discriminant in terms of support vectors

 The use of kernel functions, application-specific 

measures of similarity

 No need to represent instances as vectors

 Convex optimization problems with a unique 

solution
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Optimal Separating Hyperplane
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Margin

 Distance from the discriminant to the closest instances 

on either side

 Distance of x to the hyperplane is

 We require

 For a unique sol’n, fix ρ||w||=1, and to max margin
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Margin



Support Vector Machines

 SVMs use a single hyperplane; one Possible Solution

B
1
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 Another possible solution

B
2

Support Vector Machines
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 Other possible solutions

B
2

Support Vector Machines
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Support Vector Machines

 Which one is better? B1 or B2?

 How do you define better?
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Support Vector Machines

 Find a hyperplane maximizing the margin => B1 is better than B2
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Support Vector Machines
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Most αt are 0 and only a small number have αt >0; they are the 

support vectors
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Linear SVM for Non-linearly Separable Problems

 What if the problem is not linearly separable?

 Introduce slack variables

 Need to minimize:

 C is chosen using a validation set trying to keep the margins 
wide while keeping the training error low.
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Soft Margin Hyperplane

 Not linearly separable

 We define Soft error as:

 New primal is
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slack variables تسامح، مسامحهمتغیرهای سستی ،

The number of misclassifications is # {ξ t > 1}

where μt are the new Lagrange parameters to guarantee the 

positivity of ξ t .
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In classifying an instance, there are four possible cases: In (a), the 

instance is on the correct side and far away from the margin; rt g(xt)>1, 

ξ t = 0. In (b), ξ t = 0; it is on the right side and on the margin. In (c),       

ξ t =1− g(xt), 0 < ξ < 1; it is on the right side but is in the margin and not 

sufficiently away. In (d), ξ t =1+ g(xt) > 1; it is on the wrong side—this 

is a misclassification. All cases except (a) are support vectors. In terms 

of the dual variable, in (a), αt= 0; in (b), αt < C; in (c) and (d), αt = C.



*Hinge Loss
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0 if 1
( , )  
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We define error if the instance is on the wrong side or if

the margin is less than 1. This is called the hinge loss. If

yt = wT xt + w0 is the output and rt is the desired output:

Comparison of different loss functions for 

rt = 1: 0/1 loss is 0 if yt = 1, 1 otherwise. 

Hinge loss is 0 if yt > 1, 1 − yt otherwise. 

Squared error is (1 − yt)2. Cross-entropy is 

log(1/(1 + exp(− yt))).



* ν-SVM
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Key Properties of Support Vector Machines

1. Use a single hyperplane which subdivides the space into two 

half-spaces, one which is occupied by Class1 and the other by 

Class2.

2. They maximize the margin of the decision boundary using 

quadratic optimization techniques which find the optimal 

hyperplane.

3. When used in practice, SVM approaches frequently map (using 

) the examples to a higher dimensional space  and find margin 

maximal hyperplanes in the mapped space, obtaining decision 

boundaries which are not hyperplanes in the original space.

4. Moreover, versions of SVMs exist that can be used when linear 

separability cannot be accomplished.
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Nonlinear Support Vector Machines

Alternative 1:
Use technique that
Employs non-
linear decision 
boundaries

Non-linear function

 What if decision boundary is not linear?

21



Alternative 2:

Transform into a 
higher dimensional
attribute space and 
find  linear decision 
boundaries in this 
space

1. Transform data into higher dimensional space

2. Find the best hyperplane using the methods introduced earlier

22

Nonlinear Support Vector Machines
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Kernel Trick

 Preprocess input x by basis functions

z = φ(x) g(z)=wTz  

g(x)=wT φ(x)

 The SVM solution 



24

Vectorial Kernels

 Polynomials of degree q:
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Vectorial Kernels

 Radial-basis functions:
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Defining kernels
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 Kernels are generally considered to be measures of 

similarity.

 Kernel “engineering”.

 Defining good measures of similarity.

 String kernels, graph kernels, image kernels, ...

 Given two documents say D1 and D2, one possible 

representation is called bag of words where we 

predefine M words relevant for the application → 

φ(D1)
T φ(D2) counts the number of shared words.
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 Given two strings (of genes), a kernel measures the 
edit distance, namely, how many operations 
(insertions, deletions, substitutions) it takes to 
convert one string into another; this is also called 
alignment.

 Empirical kernel map: Define a set of templates mi

and score function s(x,mi)

φ(xt)=[s(xt,m1), s(xt,m2),..., s(xt,mM)]T

and we define the empirical kernel map as 
K(xt,xs)=φ (xt)T φ (xs)

Defining kernels



 Fixed kernel combination

 Adaptive kernel combination

 Localized kernel combination

* Multiple Kernel Learning
28
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* Multiclass Kernel Machines
29

 1-vs-all

 Pairwise separation (K(K−1)/2 classifiers)

 Error-Correcting Output Codes (section 17.5)

 Single multiclass optimization

 The one-vs.-all approach is generally preferred because 
it solves K separate N variable problems whereas the 
multiclass formulation uses K · N variables.
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* SVM for Regression

 Use a linear model (possibly kernelized)

f(x)=wTx+w0

 Use the ε-sensitive error function

 which means that we tolerate errors up to ε and also that 

errors beyond have a linear effect and not a quadratic one. 

This error function is therefore more tolerant to noise and 

is thus more robust.
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we use two types of slack 

variables, for positive and 

negative deviations, to keep 

them positive.
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subject to

The dual is

Once we solve this, we see that all instances that fall in the tube 

have αt
+ = αt

- = 0; these are the instances that are fitted with 

enough precision. The support vectors satisfy either αt
+ > 0 or αt

-

> 0 and are of two types. They may be instances that are on the 

boundary of the tube (either αt
+ or αt

- is between 0 and C), and 

we use these to calculate w0 .

we can write the fitted line as a weighted sum of the support 

vectors:

Note: (xt)T x be replaced with Kernel K(xt,x).

 0 _ 0( ) ( )( )T t t t T
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The fitted regression line to data points shown as crosses and the ε- tube 

are shown (C = 10, ε = 0.25). There are three cases: In (a), the instance is 

in the tube; in (b), the instance is on the boundary of the tube (circled 

instances); in (c), it is outside the tube with a positive slack, that is, ξt
+>0 

(squared instances). (b) and (c) are support vectors. In terms of the dual 

variable, in (a), αt
+= 0,αt

- = 0, in (b), αt
+ < C, and in (c), αt

+ = C.



* Kernel Regression

 Polynomial kernel  Gaussian kernel

34



* Kernel Machines for Ranking
35

 We require not only that scores be correct order but 

at least +1 unit margin.

 Linear case:

21
min    

2

subject to     1 ,  : ,  0

t

i i

t

T u T v t u v t

i

C

t r r



 



    

w

w x w x

( ) ( )

subject to   0 ,

t t s u v T k l

d

t t s

t

L

C

  



   

 

  x x x xThe dual is

For new test instance x, the score is calculated as  ( )  
T

t u v

t

g  x x x x



* One-Class Kernel Machines
36

 Consider a sphere with center a and radius R

   

2

2

1

min   C  

subject to

     , 0

subject to

     0 , 1

t

t

t t t

N
T T

t t s t s t s t s

d

t t s

t t

t

R

a R

L x x r r x x

C



 

  

 





   

 

  



 



x



37

One-class support vector machine places the smoothest 

boundary (here using a linear kernel, the circle with the 

smallest radius) that encloses as much of the instances 

as possible. There are three possible cases: In (a), the 

instance is a typical instance. In (b), the instance falls 

on the boundary with ξt = 0; such instances define R. In 

(c), the instance is an outlier with ξt> 0. (b) and (c) are 

support vectors. In terms of the dual variable, we have, 

in (a), αt= 0; in (b), 0 < αt < C; in (c), αt = C.

One-class support vector 

machine using a Gaussian 

kernel with different 

spreads.



*Large Margin Nearest Neighbor
38

 Learns the matrix M of Mahalanobis metric

D(xi, xj)=(xi-xj)TM(xi-xj)

 For three instances i, j, and l, where i and j are of 

the same class and l different, we require

D(xi, xl) > D(xi, xj)+1

and if this is not satisfied, we have a slack for the 

difference and we learn M to minimize the sum of 

such slacks over all i,j,l triples (j and l being one of 

k neighbors of i, over all i)



 LMNN algorithm (Weinberger and Saul 2009)

 LMCA algorithm (Torresani and Lee 2007) uses  a 

similar approach where M=LTL and learns L

*Learning a Distance Measure 
39



* Motivation Kernel PCA

40

Remark: This approach uses kernels, but is unrelated to SVMs!

Example: we want to cluster the following dataset using K-means which 

will be difficult; idea: change coordinate system using a few new, non-

linear features.



* Kernel PCA

 Kernel PCA does PCA on the kernel matrix (equal to doing PCA 

in the mapped space selecting some orthogonal eigenvectors in 

the mapped space as the new coordinate system)

 Kind of PCA using non-linear transformations in the original 

space, moreover, the vectors of the chosen new coordinate 

system are usually not orthogonal in the original space. 

 Then, ML/DM algorithms are used in the Reduced Feature 

Space.

41



Original Space Feature Space

features are a few 

linear combinations 

of features in the 

Feature Space

PCA

Reduced Feature 

Space (less dimensions)



* Kernel Dimensionality Reduction
42

 Kernel PCA does 

PCA on the kernel 

matrix (equal to 

canonical PCA with 

a linear kernel)

 Kernel LDA, CCA


