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Likelihood vs. Discriminant-based

Classification
I

- Likelthood-based: Assume a model for p(x|C,), use
Bayes’ rule to calculate P(C;|x)

gi(x) = log P(Cilx)
- Discriminant-based: Assume a model for g;(x|D;);
no density estimation.

- Estimating the boundaries is enough; no need to
accurately estimate the densities inside the
boundaries.



L inear Discriminant
I,

o Linear discriminant;
. d
O (Xlwi’WiO) =W; X+ W, = ZWinj + W
j=1

o Advantages:
o Simple: O(d) space/computation.

o Knowledge extraction: Weighted sum of attributes;
positive/negative weights, magnitudes (credit scoring).

o Optimal when p(x|C;) are Gaussian with shared cov matrix;
useful when classes are (almost) linearly separable.



Generalized Linear Model

Quadratic discriminant:
T T
g; (XIW,, Wy, Wi ) = X" WX+ W[ X+ W,

Higher-order (product) terms:

— — — y? — y? —
L =Xy L =X Lg=X, L,=X, L= XX

Map from x to z using nonlinear basis functions and use a
linear discriminant in z-space

sin(x,), exp(—(x,—m)*/c),
( Z (DU ) (2 )
exp(—Hx—mH /c), log(x,),1(x, >¢)



Two Classes

A
B g(x)=w x,Twx,+w,=0 g (X) =0 (X) -0, (X)
2(x)<0 glx)>0 = (WI X+ W ) - (W; X+ W )
C, :(wl—wz)T X+ (W — Wiy )
~ = W' X+ W,
< O
% choose C, ifg(x) > 0
~ C, otherwise

Take two points x; and x, both on the decision surface; that is,
g(xy) = g(x,) =0, then w! x; + w,=w! x, + w;— wl(x;- x,)=0



Geometry

g(x)=0
g(x)<0

wol/llwl]

g(x)>0

X =Xy +F d
P w]
g(x)

r = >—
w ||
W

o = o




Multiple Classes

>0 Ifxe Ci
<0 otherwise

Choose C, if

/gi ()= maxg, (x)

Classes are
linearly separable




Pairwise Separation

il
o A Jij (X|Wij’WijO)_Win+WijO
H,, >0 If xeC,
X
»n o O g;(x)=4 <0 if xeC,
c, ° O 5 don't care otherwise
O ~ O A
H
F " choose C, if
\ Vi#i,0;(x)>0" ?
X
H, \‘:r ¢ ,
reject

>

X
If we do not want to reject such cases, we can relax the conjunction by
' ' hoosing th ' f
using a summation and choosing the maximum o g, ( X) _ Z g, ( X)

J#i



From Discriminants to Posteriors

From Ch5: When p (x| C.) ~ N(z; , 3)
0; (XIW;, Wig ) = Wy X+ W

W, =7 W, = _%szlui +log P(C;)

y=P(C/x) and P(C,|x)=1-y

y>0.5
choose C, if < AN and C, otherwise
-y
log RN 0 : :
T 1y the logit transformation or log odds of y
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In the case of two normal

logit (P (C,[x)) = Iog P(C) - P(ClX)  classes sharing a common
1-P(C,lx) P(C,IX) covariance matrix, the log
_1og P(4C) p(XC,) (Y] P(C,) odds is linear
(XIC ) P(C)
d/2 —1/2 -1
log (27 exp| (L "2 (x| t10g P (&)
( d/2 —1/2 |: _1(X_M2 )i| P(CZ)
=W'X+W,
_ 1 _ P(C
where w =2 (1, —p1,) Wy == (i, +1,) =7 (1, —,) + log PECS
The inverse of logit:
(1 N o
0g - P(C |x) =W X+Ww, Isthe logistic function, also called the sigmoid function:
1

1

st d
0




Sigmoid (Logistic) Function

Calculate g (x)=w'x+w, and choose C, if g(x)>0, or

Calculate y = sigmoid (w'x+Ww, ) and choose C, ify > 0.5



Gradient-Descent

z2 4
o E(w[X) Is error with parameters w on sample X
w=arg min,, E(w | X)

1 Gradient - .
vV E- o OE ok

" ow ow, T owy,

- Gradient-descent:

Starts from random w and updates w iteratively in the
negative direction of gradient



Gradient-Descent

Sy

AW, = —na—E,‘v’i
oW,




Logistic Discrimination

Two classes: Assume log likelthood ratio is linear

(XIC,)

P T 0
log =W X+ W
p(XC,) :
| P(C,Ix) P(XC) | 1oq P(C)
logit(P(C,|x)) = il 3+ 1
ogit(P(C,[x)) Og1_P(C1|x) > IO(X|Cz)Jr > P(C,)
=W'X+W,
where w, =w; + log Egg%
2
X 1
y=P(Cilx)=

1+ exp[—(wa+ WO)]



Training: Two Classes

X :{xt,rt}t ri|x' ~ Bernoulli( y*)
1
1+exp[—(wa+wo)]

| (W, W, [X ) _ H(yt )(rt) (1_ % )(1‘rt)

t

E=—logl cross-entropy Maximize [ =Minimize E

E (W, w,|x ) Zrlogy +(1-r")log (1-y"')



Training: Gradient-Descent

E (W, Wyx)= Zrlogy +(1-r")log (1-y')
dz

If z=sigmoid(a) T =z(1-2)

o X ‘yJ ()
B

sy =0 25 <1~
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For j =0.....d
w; +—rand(-0.01,0.01)
Repeat

For y =0,...,d
Aw; «— 0
Fort=1,... . N
o— 0
For j =0,...,d

0O +— 0+ Wy r:‘;

y +— sigmoid(o)

Aw; — Aw; + (1

)t
y)a,j

For j =0,...,d
w; — w; + nAw;
Until convergence
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Multiple Classes (K > 2)

x={x,rtf X ~ Mult, (Ly')

p(XIC;) T 0 (Cilx) T
log =W, X+ W, = =exp(w; X+ w
p(X|Cy ) T p(Cilx) ( )
P(C)
h = Wo |
where w., =W, + log )
3 P(Clx) 1-P(Cylx) & ;
= > exp(w; X+w
S R AR I L
1 1
:P(Cle): K-1 ~ K

1+ Zexp(wfx+wio) ZEXD(WiTerWio)



)
P(C\[x) _exp(wix+w ) = P(C) - Eip(Wi X+ W,
P(Cclx) 1+ exp(Wix+w,, )

J=1

exp| Wi X+ W, |

, 1=1..,K softmax

Zi y, =1.

.:|5 C.Ix)=
y| ( || ) le(:1exp|:w-|j-x+wjo:|

'({Wi,wio}iIX)=1:[H(y§)(“t), E =—logl
E ({wiwo} )= -2 3 n'logy;

Aw, :UZ(rjt_ytj )Xt AW :nZ(r;—yE)
t t
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Repeat
Fori=1....,K, For j=0....,d, Aw;; — 0
Fort=1.....N
Fori=1.... . K
o0; — 0
For  =0,..., d

t

0 < 0 + Wij T

Fori=1..... K

yi «— exp(0;)/ Y, exp(ok)
Fori=1.... . K

Aw;j — Aw;j + (?:: — y;)xt

Wij «— Wij + nAw;;
Until convergence




Notes

Note that because of the normalization in softmax,
w; and w;, are affected not only by x* € C; but also
by Xt € C;, 1 #].

During testing, we calculate all y,, k=1,...,K
and choose C; If y; = max, V,.

We do not need to continue training to minimize
cross-entropy as much as possible; we train only
until the correct class has the highest weighted
sum, and therefore we can stop training earlier by
checking the number of misclassifications.
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Generalizing the Linear Model
B

- Quadratic:
log P(XC,) = X" WX+ W, X+ W,
p(X/Cy)
= Sum of basis functions:
p(XC;)
log =W, @(X)+W
p(XICx) (X)W

where ¢(x) are basis functions. Examples:
o Hidden units in neural networks (Chapters 11 and 12)
o Kernels in SVM (Chapter 13)



“Discrimination by Regression

Classes are NOT mutually exclusive and exhaustive

r' =y' +¢& where ¢ ~ N(O,az)

. . 1
t _ d Tt —
y' =sigmoid (w'x' +w,) 1+exp[—(wat+wo)]
1] ey
I(W,w0|x)_lj—erm7 Xp| — .

AW =0y (r'=y )y (1-y' )X, Aw, =UZ(“ -y (-y)

t



Learning to Rank

Ranking: A different problem than classification or
regression

et us say x" and x" are two instances, e.g., two
movies.

We prefer u to v implies that g(x{|0)>g(x" |0)

where g(x) Is a score function, here linear:
g(x)=w'x

Find a direction w such that we get the desired

ranks when instances are projected along w



Ranking Error

We prefer u to v implies that g(x“*)>g(x"), so
error 1s g(xY)-g(xY), If g(x4)<g(x")

Ewl[{r',r"}) = > [g(xV]0) - g(x"[0)],

ra<rv

where a. is equal to a if a = 0 and 0 otherwise.

g(X)=wTx = E(w[{r',r'}) = > wl(x¥ —x"),

ru<pv
For each r* < ¥ where g(x'10) > g(x"10), we do a small update:

oE ,, .
AW;j = —fla—wj =-n(xj—-xj),j=1,...,d



(a) (b))

5 5

4 —+1 = a4 —+1

3+ = 3+

+3 h +2
2 +2 = 2F +3
1+ = 1+
/-.—
P
-
o
~

o g +4 - o +4
—1 —1

—1 o] 1 2 3 4 5 —1 0 1 2 3 4

Sample ranking problems and solutions. Data points are indicated
by ‘+" and the numbers next to them indicate the rank where 1 is
the highest. We have a full ordering here. The arrow indicate the

learned W. In (a) and (b), we see two different ranking problems
and the two corresponding solutions.



