Ch 11: CLUSTERING

¢ Basic Concepts

In clustering or unsupervised learning no training data,
with class labeling, are available. The goal becomes:
Group the data into a number of sensible clusters
(groups). This unravels similarities and differences among
the available data.

» Applications:
e Engineering
e Bioinformatics
e Social Sciences
e Medicine
e Data and Web Mining

» To perform clustering of a data set, a clustering
criterion must first be adopted. Different clustering
criteria lead, in general, to different clusters.



> A simple example

1. Two clusters

2. Clustering criterion:
How mammals bear
their progeny

Lizard, sparrow,
viper, seaqull, gold

fish, frog, red
mullet

Blue shark,
sheep, cat,

dog

Sheep, sparrow,
dog, cat, seaqull,
lizard, frog, viper

1. Two clusters
2. Clustering criterion:
Existence of lungs

Gold fish, red
mullet, blue
shark




¢ Clustering task stages

» Feature Selection: Information rich features- Parsimony

» Proximity Measure: This quantifies the term similar or
dissimilar.

» Clustering Criterion: This consists of a cost function or
some type of rules.

» Clustering Algorithm: This consists of the set of steps
followed to reveal the structure, based on the similarity
measure and the adopted criterion.

» Validation of the results.
» Interpretation of the results.



» Depending on the similarity measure, the clustering
criterion and the clustering algorithm different clusters
may result. Subjectivity is a reality to live with from
now on.

> A simple example: How many clusters?

2or4?

% Basic application areas for clustering

» Data reduction: All data vectors within a cluster are
substituted (represented) by the corresponding cluster
representative.

» Hypothesis generation
» Hypothesis testing
» Prediction based on groups



TYPES OF FEATURES

s With respect to their domain
» Continuous (the domain is a continuous subset of R).

» Discrete (the domain is a finite discrete set).
e Binary or dichotomous (the domain consists of two possible values).

“ With respect to the relative significance of the values they
take
» Nominal (the values code states, e.g., the sex of an individual).

» Ordinal (the values are meaningfully ordered, e.qg., the rating of the
services of a hotel (poor, good, very good, excellent)).

» Interval-scaled (the difference of two values is meaningful but their
ratio is meaningless, e.g., temperature).

» Ratio-scaled (the ratio of two values is meaningful, e.g., weight).




% Clustering Definitions
» Hard Clustering: Each point belongs to a single cluster
o Let X ={X;,X,,-..; Xy}

e An m-clustering R of X, is defined as the partition of X
into m sets (clusters), C,, C,,...,C,,, so that
- C#0,i=12,...m

l

- CnNC, =9, i#j,i,j=12,....m

In addition, data in C; are more similar to each other and
less similar to the data in the rest of the clusters.
Quantifying the terms similar-dissimilar depends on the
types of clusters that are expected to underlie the
structure of X. 6
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(a) Compact clusters. (b) Elongated clusters. (c) Spherical and ellipsoidal clusters.

» Fuzzy clustering: Each point belongs to all clusters up
to some degree.

A fuzzy clustering of X into m clusters is characterized
by m functions

e U, :x—>[0]1], J=12,...m
e Dui(x)=1i=12..,N
j=1

N
e 0<Du(X)<N, j=12..m
=1



These are known as membership functions.
Thus, each x; belongs to any cluster “up to
some degree”, depending on the value of

u.(x;), j=12,.,m

u;(x;) close to 1= high grade of

membership of x. tocluster j.
u;(x;)close to 0=

low grade of membership.




PROXIMITY MEASURES

% Between vectors

»Dissimilarity measure (between vectors of X) is a
function

d: XxX——R
with the following properties
. dd, eN: —o0<d, Sd()_c,)_/)<+oo, Vx,yeX
c d(x,x)=d,, VxeX
*d(x,y)=d(y,x), Vx,ye X



If in addition

» d(x,y)=d, if and only if x=y
» d(x,z)<d(x,y)+d(y,z), VX, y,z€ X

(triangular inequality)

d is called a metric dissimilarity measure.
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» Similarity measure (between vectors of X) is a
function

s XxX—R

with the following properties

+ds, eN: —oo<S()_c,)_/)SSO <+, Vx,yeX

- S(X,x)=5,, VxeX

s(x,y)=s(y,X), Vx,yeX

11



If in addition

e S(x,y)=5,1f and only if x=y
o S, Y)s(y,2) <[s(x, y)+s(y,2)Is(x,2), Vx,y,ze X

s is called a metric similarity measure.

e Between sets
Let D;c X, i=1,....,kand U={D,,...,D,}
A proximity measure g on U is a function

. UxU—>R

A dissimilarity measure has to satisfy the relations of
dissimilarity measure between vectors, where D; s are used in
place of x, y (similarly for similarity measures).
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PROXIMITY MEASURES BETWEEN VECTORS

« Real-valued vectors (S | P)”
i— 2z ’

» |ynormp €[1,0] Izl =93 | ax ).
Li=1.2,....n

AN O S

pell,o0);
P = 0.

N

RN <

/

p=1 p=>2 p =00 p=3

1

IX|le= [supp(x)|, where supp(x) = {i : x; # 0} denotes the
support of x and [supp(x)| denotes the cardinality of supp(x).

» Dissimilarity measures (DMs)
> Weighted |, metric DMs

d,(x,y)= (Zw X, —, Ip)””



Interesting instances are obtained for
0=1 (weighted Manhattan norm)

D=2 (weighted Euclidean norm)
D=c0 (d,(X,Y)=MaX,q Wi[X;-Yil)

» Other measures

X~y
d.(x,y)=—lo 1——2 e
¢ (X, )) glo[ ; b —a J

Jj=l1 %

where b; and a; are the maximum and the minimum values
of the j-th feature, among the vectors of X (dependence
on the current data set)

2
Another DM is 1< x, —y,
dQ()_Ca)_/): _ZL . J]

[ 53 X, +y,
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» Similarity measures

e The most common similarity measures for real-valued
vectors used in practice are:

o Inner product

[
Sinner(’lca ,)_/) — )_CT)_/ = inyi
i=1

e Janimoto measure

= EY sy
S (X,p)= = =2/
e | x [+l yl* —x"y T 1+(&_X)1(&_X)
Xy
d, (X,
5. (xy) =1- (%, Y)

XN+ yl
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% * Discrete-valued vectors
> Let F={0,1,....k-1} be a set of symbols and X={x,,....x,} < F'

> Let A(x.y)=[a;], i, j=0,1,....k-1, where a; is the number of places where
x has the i-th symbol and y has the j-th symbol. (contingency table)

k-1 k-1
NOTE: q. —

i
i=0 j=0

Several proximity measures can be expressed as combinations of the
elements of A(x,y).

» Dissimilarity measures:
e The Hamming distance (number of places where x and y differ)

k=1 k-1
dH ()_Ca .)_/) = ZZ

i=0 j=0

e The |, distance J#

dy(x,y) = le A

16



> Similarity measures: =

aii
=]
. S (Xx = L
e Tanimoto measure : 7’ (—’)—/) k=l k-l
n. + ny — al.j
i=1 j=1
k—1 k-1 k—1 k-1
where a;, n,= a;,
i=1 j=0 i=0 j=I

e Other similarity functions between x,y eF' can be defined using
elements of A(x,y). Some of them consider only the number of places
where the two vectors agree and the corresponding value is not 0,
whereas others consider all the places where the two vectors agree.

e Measures that exclude a, Za.. / and Za / (I -ay)

k-1
e Measures that include a,,: Zaﬁ ﬁ
i=1
17



» Mixed-valued vectors

Some of the coordinates of the vectors x are real and the rest are
discrete.

Methods for measuring the proximity between two such x; and x;:

> Adopt a proximity measure (PM) suitable for real-valued vectors.

» Convert the real-valued features to discrete ones and employ a
discrete PM.

The more general case of mixed-valued vectors:

» Here nominal, ordinal, interval-scaled, ratio-scaled features are
treated separately.

18



The similarity function between X; and x; iS'

S(X;,X;) = ZS (_Z»_])/ZW

In the above definition: 97

- w,=0, if at least one of the g-th coordinates of x; and x; are
undefined or both the g-th coordinates are equal to 0.
Otherwise w,=1.

e If the g-th coordinates are binary, s,(x;.x;)=1 if x;;=X,,=1 and 0
otherwise.

we|ght factor

e If the g-th coordinates are nominal or ordinal, s (x;x;)=1 if X;;=x;,

and 0 otherwise.
e If the g-th coordinates are interval or ratio scaled-valued

Sq()_(i’)_(j)zl_lxiq_qu |/rq’

where r, is the interval where the g-th coordinates of the
vectors of the data set X lie.
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Example 11.6

Let us consider the following four 5-dimensional feature vectors, each representing a specific
company. More specifically, the first three coordinates (features) correspond to their annual
budget for the last three years (in millions of dollars), the fourth indicates whether or not there
IS any activity abroad, and the fifth coordinate corresponds to the number of employees of
each company. The last feature is ordinal scaled and takes the values 0 (small nhumber of
employees), 1 (medium number of employees), and 2 (large number of employees). The four
vectors are

Company 1stbud. 2nd bud. 3rd bud. Act. abr. Empl.

1(xD) 1.2 1.5 1.9 0 1
2(x3) 03 0.4 0.6 0 0 (11.37)
3(x3) 10 13 15 1 2
4(xy) 6 6 7 1 1

For the first three coordinates, which are ratio scaled, we have »; = 9.7, r», = 12.6, and
r3 = 14.4. Let us first compute the similarity between the first two vectors. Itis

si(x, x2)=1— 1.2 —0.3]/9.7 = 0.9072
s2(x1, x2)=1—11.5—0.4]/12.6 = 0.9127
s3(xp, a2) =1—11.9 — 0.6|/14.4 = 0.9097
si(xg, ¥2) =0
and
ss(xy, x2) =0

Also, w4 = 0, while all the other weight factors are equal to 1. Using Eq. (11.34), we finally
obtain s(x, x2) = 0.6824.

Working in the same way, we find that s(aq, x3)=0.0541, s(xq1, x4) = 0.5588,
s(x2, x3) =0, s(x2, x5) = 03047, s(x3, x5) = 0.4953.



% Fuzzy measures

Let x, ye[0,1]. Here the value of the i-th coordinate, x; of x, is not
the outcome of a measuring device.

» The closer the coordinate x; is to 1 (0), the more likely the
vector X possesses (does not possess) the I-th characteristic.

> As X; approaches 0.5, the certainty about the possession or
not of the i-th feature from X decreases.

A possible similarity measure that can quantify the above is:

s(x;, y;) = max(min( 1 —x;,1-y;), min(x;, y,))

A common similarity measure between two vectors x and y is

defined as l g
S (X, ) = (Z S(xl-,y,-)"j
i=1

maximum and minimum values of S are | ¥4 and 0.5 | ¥,
21



Example 11.7

In this example we consider the case where I =3 and ¢ = 1. Under these circumstances, the
maximum possible value of sg is 3. Let us consider the vectors x; = [1,1, 117, x2 = [0,0, 117,
x3=1[1/2,1/3, 17417, and x4 =11/2,1/2, 1/217. If we compute the similarities of these vectors
with themselves, we obtain

S};(xl, x1) = 3dmax(min(l — 1,1 — 1), min(1,1)) = 3

and similarly, sp(x2, x2) = 3, sp(x3,x3) = 1.92, and sj (x4, x40 = 1.5. This is very inter-
esting. The similarity measure of a vector with itself depends not only on the vector but also
on its position in the H; hypercube. Furthermore, we observe that the greatest similarity
value is obtained at the vertices of H;. As we move toward the center of H;, the similarity
measure between a vector and itself decreases, attaining its minimum value at the center
of Hj.

Let us now consider the vectors y, = [3/4,3/4,3/417, y, = 1,1, 117, y5 = [1/4,1/4,
1747, yi = [1/2,1/2, 1/217. Notice that in terms of the Euclidean distance d2(y1,Y2) =
d2(ys,y4). However, sh(y,,y,) = 2.25 and s;p(y5,y5) = 1.5. These results suggest that
the closer the two vectors to the center of Hy, the less their similarity. On the other hand, the
closer the two vectors to a vertex of H;, the greater their similarity. That s, the value ofsg(x,y)
depends not only on the relative position of x and y in Hy but also on their closeness to the

center of H;.
22



% Missing data
For some vectors of the data set X, some features values are unknown
Ways to face the problem:

> Discard all vectors with missing values (not recommended for small
data sets)

» Find the mean value m; of the available i-th feature values over that
data set and substitute the missing i-th feature values with m..

» Define b,=0, if both the i-¢/ features x;, y, are available and 1
otherwise. Then the proximity between x and y is defined as

|
| —Z::lbi y ;b:i—ogo()(i Yi)

where ¢(x.,y;) denotes the PM between two scalars x;, y;.

> Find the average proximities ¢, ,(i) between all feature vectors in X
along all components. Then

@(&,x)=ZW(Xi,yi)

P(X,y)=

where w(x.,y,)=#(x..y;), if both x; and y; are available and 4,,(i)
otherwise. 23



PROXIMITY FUNCTIONS BETWEEN A
VECTOR AND A SET
“ Let X={X X5, ...xnyand Cc X, x € X

< All points of C contribute to the definition of ¢ (x, C)
» Max proximity function

Soﬁx (zﬂ C) — maX)_/eC 80(59 )_/)

» Min proximity function

Prin (X,C) =min . o(X, y)

» Average proximity function

) 1
§9 40 (X, C) = Z;SO(J_% Y) (n. is the cardinality of C)
= 24



<+ A representative(s) of C, r., contributes to the definition of
 (x,C)
In this case: o (x,C)= o (x,rc)
Typical representatives are:
» The mean vector:

m, =(%Cj21 where n. is the cardinality of C

yeC

» The mean center: d: a dissimilarity

/ measure

meeC: > d(me,y)<> d(z,y), VzeC

yeC yveC

> The median center:
m,., €C: med(d(m,,.y)|yeC)<med(d(z,y)|yeC), VzeC

NOTE: Other representatives (e.qg., hyperplanes, hyperspheres) are
useful in certain applications (e.g., object identification using

clustering techniques). .



PROXIMITY FUNCTIONS BETWEEN SETS

< Let X={x,,....x\}, D;, D;c X and n;=|Dj|, n;=|Dj|
« All points of each set contribute to ¢ (D;,D;)

» Max proximity function (measure but not metric, only if o is a
similarity measure)

Sofgax (DZ,DJ) — maX)_ceDi,)_/eDj 50(3_59 .)_/)

» Min proximity function (measure but not metric, only if ¢ is a
dissimilarity measure)

Sof;in(Dii’Dj) :min)_ceDi,)_/eDj SO()_CD.)_/)

» Average proximity function (not a measure, even if g is a
measure)

o (D, D))= (/ jZZS@(xy)

xeD.xeD 26



“ Each set D, is represented by its representative vector m.

» Mean proximity function (it is @ measure provided that ¢ is a
measure):

Somean(DwD ) So(mzﬂ )

» Another proximity function

SOZS(DiaDj): (_19_])

nl.+ j

NOTE: Proximity functions between a vector x and a set C may be
derived from the above functions if we set D,={x}.
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» Remarks:

o Different choices of proximity functions between sets may
lead to totally different clustering results.

o Different proximity measures between vectors in the same
proximity function between sets may lead to totally different
clustering results.

e The only way to achieve a proper clustering is

— by trial and error and,

— taking into account the opinion of an expert in the field of
application.
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