Ch9: CONTEXT DEPENDENT CLASSIFICATION

% Remember: Bayes rule
P(e3]%) > P(e)|x), V] #1

% Here: The class to which a feature vector
belongs depends on:
> Its own value
» The values of the other features vectors
» An existing relation among the various classes

» This interrelation demands the classification to be
performed simultaneously for all available feature

vectors

% Thus, we will assume that the training vectors
X1, X5,.., Xy OCcUr in sequence, one after the
other and we will refer to them as observations



% The Context Dependent Bayesian Classifier
>Llet X X, X5y, X }
>let o, 1=12,..,M

> Let Q. be a sequence of classes, that is
Q. lw, ®, ...

There are M N of those

» Thus, the Bayesian rule can equivalently be stated as

X >Q: PQIX)>P@Q|X) Vi#j, i,j=12,...,M"
I I J

% Markov Chain Models (for class dependence)
F)(C‘)ik a)ik_l)

W; @ ... a)il) = F’(a)ik
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+* NOW remember:

P(Q)=P(@, ®,,..0,) =

In

or

P(Q)=([]P®,]o, )P@,)

» Assume:

» X, statistically mutually independent
» The pdf in one class independent of the others, then

p(X|Qi)=ﬁp(xklwik)

k=1




% From the above, the Bayes rule is readily seen
to be equivalent to:

P(€|X)(><)P(Q;|X)
P(Q,)p(X|Q)(><)P(Q)) p(X|22))

that is, it rests on

(X [Q)P(Q) =P(@,) p(x;|) [ [P(@, |, )p(x |,)

% To find the above maximum in brute-force task
we need O(NVMN) operations!!

% Given a sequence of observations X, X, Xy},
find the path of successive (class) transitions
that maximizes above equation.




The Viterbi Algorithm
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» Each Q; corresponds to one path through the trellis
diagram. One of them is the optimum (e.g., black).
The classes along the optimal path determine the
classes to which w; are assigned.

» To each transition corresponds a cost. For our case

o

* d (a)ik ’a)'k—l) - P(a)'k

o, )X |@,)
. d(@,,,)=P(w,)p(X|o,)

e D= a(wik’wik_l): p(x‘Qi)P(Qi)

N
k=1

the overall cost to be optimized becomes



« Equivalently

N A N
InD = Zlnd (0, @ )= Zd (o, @, )=D
k=1 k=1
where,

d(w o )=hd® o )
- Define the cost for reaching class o, at stage & via a

path 7as K
D(w, ) = Z d(w, o, )
r=1

Bellman’s Principle:

(Io, jo)(?—,p;)>(if i) =g, jo)o—pt>(i 1)@, J)O—pt)(lf i)
@ denotes concatenation of paths 7



» Bellman’s principle now states

D (,) = MaX | Dy (@, ) +d (0,0, ) |
i i, =12,..,M

with D, (a)io) =0

» The optimal path terminates at a):N

*

w, =argmaxD, ., (&, )
i

o Complexity O (NMF)



Example

“ Apply the Viterbi algorithm to compute the optimal paths up to
stage A= 4, Assume that x, =1.2 and that the observations reside
In the one-dimensional space. Let the task involve three classes,
namely, o, , @,, @;. We will further assume that the optimal
paths up to stage A=3 have been computed and are shown in
black lines in Figure. Let the optimal costs associated with each
class at stage A= 3 be equal to X w,) = -0.5, D(w,)= -0.6,

D w,)=-0.2.

Y

Table 9.1 Transition Costs Between Nodes for
Example 9.1

Classes Wi, =01 W, =02 W, = O3
Wi, , = W1 0.1 0.7 0.2
wi,_, = W2 0.4 0.3 0.3
wi, | = W3 0.3 0.1 0.6




N N uz-)z)
plxlwn N 2O exp( 202

4
p1 = 1.0and of = 0.03, uz = 1.5and o5 = 0.02, u3 = 0.5 and o5 = 0.01.

We will first compute the optimal path reaching class o, at stage 4= 4.

In p(x4 = 1.2|w,-4 = wy1) = —0.1578

Total cost for the transition from w;, =
—0.5 + In(0.1) — 0.1578 = —2.9604.

Total cost for the transition from w;,

w1 o w;, = w1 Is equal to

= w2 to w;, = wy Is equal to
—0.6 + In(0.4) — 0.1578 = —1.6741.

Total cost for the transition from w;; = w3 to w;;, = w; Is equal to

—0.2 + In(0.3) — 0.1578 = —1.5617.

Hence, the optimal path reaching class @, at stage k=4 is through w, at stage & =3.



For the transitions to w, at 2 = 4, we have
Inp(xy = 1.2|(z)i4 = w>2) = —0.2591

and the respective values for the paths reaching class w> from classes wy, w> and wz atk = 3
are —1.1158, —2.0631, —2.7617. Thus the optimal path reaching w» at 2 = 4 is through w1
at &k = 3.

Finally, the respective values for the paths reaching w3 at & = 4 are

In p(x4 = 1.2|U)i4 = w3) = —2.2176

and —4.3271, —4.0216, —2.9285. As a result, the best path reaching node w3 at stage k& = 4
goes through class w3 at stage & = 3 (self-transition).

If & = 4 Is the final stage, that is, only four observations are available, then the optimal
path, denoted by a bold line in Figure 9.2, is the one ending at stage w, with an overall cost
equal to —1.1158. Going backwards along the optimal path (backtracking), we assign: x4 to
w2, X3 10 w1, X2 10 w2, x1 10 w1 and xg t0 w>.
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‘*Hidden Markov Models (Pr-Ch3-p6)(ML-chap15)

» In some problems like the channel equalization, the states
are observable and can be “learned” during the training
period

» Now we shall assume that states are not observable and can
only be inferred from the training data

> Applications:
e Speech and Music Recognition
e OCR
e Blind Equalization
e Bioinformatics

12



> An HMM is a stochastic finite state automaton, that
generates the observation sequence, x, X,,..., Xy

» We assume that: The observation sequence is
produced as a result of successive transitions
between states, upon arrival at a state:
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» This type of modeling is used for nonstationary
stochastic processes that undergo distinct transitions

among a set of different stationary processes.

P(1]1) P(22) P(3]3)

\\\M-H_-.‘/- \_\P. A’ \\’ .‘/
P(2|1) P(3[2)

p(a|l) p(w)2) p(x|3)

."II {lﬂ \\'\

f,.*"' \'\\ A \ A~

;‘f \ ) | ) \ \,~ h\
X L X
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» Examples of HMM:

e The single coin case: Assume a coin that is tossed behind
a curtain. All it is available to us is the outcome, i.e., Hor
7. Assume the two states to be:

S=1>H
S=2>T
This is also an example of a random experiment with

observable (not hidden) states. The model is
characterized by a single parameter, e.qg., AH). Note that

A1) = AA), A2)=ATN=1-AAH)
P =PEH peia=1=PED A 1)) denotes the transition
‘ @ ’ probability from state sto
1 2 state s once the coin has
P(112) = P(H) been tossed and an
P 1P observation has been made

Single Coin available to us. o



» The two-coins case: For this case, we observe a sequence of H
or 7. However, we have no access to know which coin was
tossed. Identify one state for each coin. This is an example
where states are not observable. H or 7 can be emitted from

either state. The model depends on four parameters.

Note: A1|2) is the

AR). A(R), AL, A2R2) orobability that the

current observation
P11 P(212) (Wthh can be either H
or 7) is the outcome of

‘ @ ’ an experiment
performed using coin 1
P(112) = P2|2) (state /=1) and that the
P (H) P,(H) previous observation
P(D)=1—PH) P,(1) =1— P, Was the result of tossing

coin 2 (state /=2).

Two-Coins (b) 6



» The three-coins case example is shown below:

P(11) P(2|2)
P(2[1)

Nine parameters
are now required

Py(H) Py(H) Py(H)

P(T1-P(H) P(Tr1-P(H) P(T=1-F(H)

> Note that in all previous examples, specifying the model
IS equivalent to knowing:

» The probability of each observation (~,7) to be emitted from
each state.

» The transition probabilities among states: A4)).
17



» A general HMM model is characterized by the
following set of parameters

1) K, number of states, s=1,2,...,M
2) P(lj)i,j=12,.,K,
3) p(x]i)i=12..K,

4) A, F1,2,...,K Initial state probabilities, A.)

That is:
S={P(@i[]j)pli)P(i)K}

18



Example of Hidden Markov Model




Example of Hidden Markov Model

» Two states : ‘Low’ and ‘High’ atmospheric pressure.

» Two observations : ‘Rain’ and ‘Dry’.

« Transition probabilities: P(‘Low’|‘Low’)=0.3 ,
P(‘High’|‘Low’)=0.7 , P(‘Low’|*High’)=0.2,
P(‘High’|*High’)=0.8

 Observation probabilities : P(‘Rain’|‘Low’)=0.6 ,
P(‘Dry’|‘Low’)=0.4 , P(‘Rain’|*High’)=0.4 ,
P(‘Dry’|‘High’)=0.6 .

* Initial probabilities: say P(‘Low’)=0.4 , P(‘High’)=0.6 .




Calculation of observation sequence probability

 Suppose we want to calculate a probability of a sequence of
observations in our example, {‘Dry’,’Rain’}.

« Consider all possible hidden state sequences:
P({Dry’’Rain’} ) = P({*Dry’,’Rain’}, {*"Low’,’Low’}) +
P({Dry’,’Rain’}, {‘Low’,’High’}) + P({‘Dry’,’Rain’},

{High’,’Low’}) + P({*Dry’,’Rain’}, {*High’,’High’})

sswhere first term is :

P({Dry’,’Rain’}, {‘Low’,’Low’})=

P({Dry’,Rain’} | {'Low’,’Low’}) P({‘Low’’Low’}) =
P(‘Dry’’Low’)P(<Rain’|"Low’) P(‘Low’)P(Low’|’Low)
= 0.4x0.6%0.4x0.3=0.0288



» What is the problem in Pattern Recognition

» Given M reference patterns, each described by an
HMM, find the parameters, S, for each of them
(training or learning)

» Suppose we have an HMM as well as a set of
observations X. Determine the most likely sequence

of hidden states that led to those observations
(decoding)

» Given an unknown pattern, find to which one of the
M, known patterns, matches best (recognition or
evaluation)
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» Recognition: Any path method
» Assume the M models to be known (M classes).
> A sequence of observations, X, is given.

» Assume observations to be emissions upon the
arrival on successive states

» Decide in favor of the model S (from the W™
available) according to the Bayes rule

S” =arg max P(S|X)

»for equiprobable patterns

S” =arg max p(X|S)

23



» For each model S there is more than one possible
sets of successive state transitions Q, each with
probability P(¢|S)

Thus: P(X |S)=Zp(x,gi\5)

= Z p(X ‘Qi ,S)P(€ ‘S)

» For the efficient computation of the above DEFINE

e forward variable (/)
Ot(ik)= p()il’---’)iwik 1S)
:Za(ik—1)P(ik L )px 1), k=2,..,N

a(l)=P>)p(x,[1,) 24



> a4 Is the probability density of the joint event:
(a) a path is at state 4 (4 € {1, 2, ...,K,}) at stage A and

(b) observations x;, X, . . ., X, have been emitted at
the previous stages and

(c) observation x, Is emitted from the state 4 at stage 4.
a(ly,) = p()_(li"")_(k+1’ik+1‘8)

P(ik+1‘ik) p()_(k+1‘ik+1)

T
T .- o=
History Local activity

a(ly) =Pa)p(X,[1;) 25



LR ik_K s ik+1=Ks
. ........... . . ...........
® - () ® .-
. P(ik+l|/z’k)
. 4 .
a(y) Lw)a'(zkﬂ )
: C%
: ; P(wkﬂ‘ikﬂ)
® ... .” ® .
L= =1 U1 =1
X Ly, !

P(X[S) =Y a(iv)

Compute this
for each S
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= Some more quantities

 Backward variable f(/,): The probability density
function of the event: observations x,., ,...,X, Occur at
stages A+1, ..., V, given that at stage kthe path is at state ..

L) = P(Xiigr Xirzrer Xy ‘ik,S)
- zﬁ(ikﬂ)P(ikﬂ ) p()_(k+1‘ik+1)’ k=N-1...,1

Ik+1

Bliy) =1 iyefl2,..K!

A 4): The probability density of the joint event: (4) a path Is at
state 4 at stage kand (b) x, ,...,X,, have been observed is:

7)) =PXy, 0 Xy o1y ‘S)
= P(X g, Xy 1y ‘S) P(Xki1se Xy ‘ik’S) =a(l, ) B>, )

27



»>Training
e The philosophy:
Given a training set X, known to belong to the specific

model, estimate the unknown parameters of S, so that
the output of the model, e.q.

p(X[S) =Y aiy)

IN=1

to be maximized

» This Is a ML estimation problem with missing data

»The number of computations is of the order of NK?
(compare with NKN).

28



Baum—Welch Reestimation

v' Assumption: Data x discrete
xe{l2,., r}= p()_(\i) = P()_(\i)
v' Definitions:

= 5[/, J, X| S) = the probability of the joint event:

» (a) a path passes through state /at stage A and

» (b) through state /at the next stage &+1 and

» (c) the model generates the available sequence of
observations X, given the parameters of the model S.

= v(/| X, S) = the probability of the event: a path passes
through state /at stage A given the model and the
available observation sequence. 29



Can be shown

gk(i’j)zék(i,j |X’S):§k(i’jix |S)

P(X|S)
- a(i =)PO)P Xl DA, = 1)
gk(li J)_ P(X‘S)

(i)=7(i|X,S) = a(lk — I)IB(IK =1)
Vi\l) =7k Q) =
P(X ‘S)
u 22:1 ve(©) can be regarded as the expected (over the number of stages)
number of times state 7 occurs, given the model S and the observation

sequence X. When the upper index in the summation is N — 1, this quantity
is the expected number of transitions from state 7.

n Z,};ll ér(i,j) can be regarded as the expected number of transitions from
state 7 to state j, given the model and the observation sequence.

30



» The Algorithm:

> Initi

al conditions for all the unknown parameters.
Compute P(X | S)

»Step 1. From the current estimates of the model
parameters reestimate the new model s from

5 _kz_;‘fk(" J) _ #of transitions from i to j
B (J")_ N-1 # of transitions from i

ZVk(i)

k=1

N .
z T (|) = of being at state |

- P(i)=70) 1



> Step 2: Compute P(x\§). If P(X|S)-P(X|S)>¢, S=S
go to step 1. Otherwise stop.

« Each iteration improves the model

S: P(x\§) > P(X|S)

» The algorithm converges to a maximum (local or global)
« The algorithm is an implementation of the EM algorithm

32



Normalization is Important

* Normalization is required to avoid such recursive algorithms from
accumulating large amounts of computational noise.

« We can apply a normalization factor at each step of the calculation:

B N
ﬁQ where the scale factor, Q, is givenby: Q; = Z“i t), Q, =1
| i=1

* This Is applied once per state per unit time, and simply involves
scaling the current o.’s by their sum at each epoch (e.g., a frame).

» Also, likelihoods tend to zero as time increases and can cause
underflow. Therefore, it iIs more common to operate on log
probabilities to maintain numerical precision . This converts products
to sums but still involves essentially the same algorithm (though an
approximation for the log of a sum is used to compute probabilities
involving the summations). 3


http://www.ece.msstate.edu/research/isip/publications/courses/ece_8443/lectures/current/lecture_12.ppt

HMM Word Recognition

» HMM can model all possible
words

» Each state corresponds to
each letter of alphabet

> Letter transition
probabilities are calculated
for each pair of letters

> Letter confusion
probabilities are symbol
probabilities

» Separate HMMs are used to
model each word

®
}o%;

NoRo0
®

500000

e Each word, e.qg., cat, dog, etc,
has an associated HMM

e For a test utterance determine
which model has highest probability
e HMMs for speech are left-to-right
models

e HMM produces a class conditional
class-probability 34



