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Ch6: Optimal Feature Generation

❖ In general, feature generation is a problem-dependent 
task. However, there are a few general directions 
common in a number of applications. We focus on three 
such alternatives.

➢ Optimized features based on Scatter matrices (Fisher’s 
linear discrimination). 

• The goal: Given an original set of m measurements

, compute , by the linear transformation

 so that the J3 scattering matrix criterion involving Sw, Sb 
is maximized. AT is an matrix.

mx 
y

xAy T=

m
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Principal Component Analysis

• Given N m-dimensional samples x1, x2, …, xN. 
Representing the set by x0 (finding a vector x0 

such that the sum of the squared distances 
between x0  and the various xk  is as small as 
possible. We define the squared-error criterion 
function J0(x0) by

 and seek the value of x0 that minimizes J0. 
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• Solution: x0=m, where m is the sample mean,

• Proof: 1
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• The sample mean is a zero-dimensional 

representation of data set. It does not reveal 

any of the variability in the data.

• We can obtain a more interesting, one-

dimensional representation by projecting the 

data onto a line running through the sample 

mean, x=m+ae, where e is a unit vector in the 

direction of the line.

• If we represent xk by m+ake, we can find an 

“optimal” set of coefficient ak by minimizing 

the squared-error criterion function
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Recognizing that ||e||=1, partially differentiating with respect to ak,

and setting the derivative to zero, we obtain

   ak=eT(xk-m)   (83)
Geometrically, this result says that we obtain a least-squares 

solution by projection the vector xk onto the line in the direction

of e that passes through the sample mean.

Finding the best direction e for the line. → Scatter Matrix S.
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• Scatter matrix S is N-1 times the sample covariance 

matrix. Using  Eqs 82 , 83 →

• The vector e that minimizes J1 also maximizes eTSe. 

We use the method of Lagrange multiplier to 

maximize eTSe subject to the constraint that ||e||=1.
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Letting λ be the undetermined multiplier we 

differentiate

  u= eTSe - λ(eTe-1)

with respect to e and equating to zero to obtain 

2 2 0    T Tu
   


= − =  =  = =


Se e Se e e Se e e

e

To maximize eTSe we want to select the eigenvector 

corresponding to the largest eigenvalue of the scatter matrix.

This interesting result can be extended from 

one-dimensional projection to a l-dimensional projection. 
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Where l < m. It can be shown that
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is minimized when the vectors e1, …, el are the l 

eigenvectors of the scatter matrix having the largest 

eigenvalues. Because the scatter matrix is real and 

symmetric, these eigenvectors are orthogonal.

They form a natural set of basis vectors for representing

any feature vector x. The coefficients ai are the components

of x in that basis and are called principal components.
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❖ Principal Components Analysis 

❖ (The Karhunen – Loève transform):

➢  The goal: Given an original set of m measurements 

 compute               (the data samples have zero mean).    

 for an orthogonal A, so that the elements of    are optimally 

mutually uncorrelated.

 That is 

➢  Sketch of the proof:
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➢ If A is chosen so that its columns    are the 
orthogonal eigenvectors of Rx, then

 where Λ is diagonal with elements the respective 
eigenvalues λi.

➢Observe that this is a sufficient condition but not 
necessary. It imposes a specific orthogonal structure 
on A.

➢  Properties of the solution

❑Mean Square Error approximation. (Fit the model with 
minimal reconstruction error)

➢  Due to the orthogonality of A:
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➢ Define a new vector in the m-dimensional subspace

➢ The Karhunen – Loève transform minimizes the square error:

➢ The error is:

 It can be also shown that this is the minimum mean square error 
compared to any other representation of x by an m-dimensional 

vector.
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➢ In other words,      is the projection of      into the 
subspace spanned by the principal m eigenvectors. 

However, for Pattern Recognition this is not always the 
best solution.

x̂ x

The KL transform is not 

always best for pattern 

recognition. In this 

example, projection on 

the eigenvector with the 

larger eigenvalue makes 

the two classes coincide. 

On the other hand, 

projection on the other 

eigenvector keeps the 

classes separated.



• Total variance: It is easily seen that

That is, the eigenvalues of the input correlation matrix are

equal to the variances of the transformed features.

• Thus Karhunen – Loève transform makes the total 
variance maximum.

• The entropy of a process is defined as

and it is a measure of the randomness of the process.
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Entropy

6
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Note:

For a zero mean Gaussian multivariable m-dimensional 

process, the entropy becomes

• Assuming   to be a zero mean multivariate Gaussian, 
then the K-L transform maximizes the entropy:

                              of the resulting   process.

y

yln ( )  y yH E P y = −
 

In words, selection of  the m features that correspond to the m 

largest eigenvalues maximizes the entropy of  the process. This is 

expected because variance and randomness are directly related.
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❖ Subspace Classification. Following the idea of projecting 
in a subspace, the subspace classification classifies an 
unknown      to the class whose subspace is closer to    .

 The following steps are in order:

➢For each class, estimate the autocorrelation matrix Ri, 
and compute the m largest eigenvalues. Form Ai, by 

using respective eigenvectors as columns.

➢Classify      to the class ωi, for which the norm of the 

subspace projection is maximum

 According to Pythagoras theorem, this corresponds to 
the subspace to which     is closer.
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Example 6.2
The correlation matrix of a vector x is given by Rx , Compute the KL 

transform of the input vector.
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PCA Algorithm

❖PCA algorithm:

➢1. X  Create N × m data matrix, with one row 

vector xn per data point

➢2. X  subtract mean x from each row vector xn in X

➢3. Σ  covariance matrix of X

➢4. Find eigenvectors and eigenvalues of Σ

➢5. PC’s  the l eigenvectors with largest eigenvalues

Jure Leskovec



PCA Algorithm in Matlab

% generate data

 Data = mvnrnd([5, 5],[1 1.5; 1.5 3], 100);

 figure(1); plot(Data(:,1), Data(:,2), '+');

 %center the data

 for i = 1:size(Data,1)

   Data(i, :) = Data(i, :) - mean(Data);

 end

 DataCov = cov(Data); %covariance matrix

 [PC, variances, explained] = pcacov(DataCov); %eigen

 % plot principal components

 figure(2); clf; hold on;

 plot(Data(:,1), Data(:,2), '+b');

 plot(PC(1,1)*[-5 5], PC(2,1)*[-5 5], '-r’)

 plot(PC(1,2)*[-5 5], PC(2,2)*[-5 5], '-b’); hold off

 % project down to 1 dimension

 PcaPos = Data * PC(:, 1);

Jure Leskovec



How many components?

❖ Check the distribution of eigen-values
❖ Take enough many eigen-vectors to cover 80-90% 

of the variance

Jure Leskovec
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❖ *Independent Component Analysis (ICA)    PR-Ch3-part4

 In contrast to PCA, where the goal was to produce 
uncorrelated features, the goal in ICA is to produce 
statistically independent features. This is a much 
stronger requirement, involving higher to second order 
statistics. In this way, one may overcome the problems 
of PCA, as exposed before.

➢The goal: Given      , compute 

 so that the components of  are statistically 
independent. In order  the problem to have a 
solution, the following assumptions must be valid:

• Assume that  is indeed generated by a linear 
combination of independent components

x y

xWy =
y

x

yΦx =
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➢ Φ is known as the mixing matrix and W as the demixing 

matrix.

➢ Φ must be invertible or of full column rank.

➢ Identifiability condition: All independent components, 
y(i), must be non-Gaussian. Thus, in contrast to PCA that 

can always be performed, ICA is meaningful for non-
Gaussian variables. 

➢ Under the above assumptions, y(i)’s can be uniquely 

estimated, within a scalar factor.
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➢Common’s method: Given  , and  under the 
previously stated assumptions, the following steps 
are adopted:

• Step 1: Perform PCA on     :

• Step 2: Compute a unitary matrix,   , so that the fourth 
order cross-cummulants of the transform vector

 are zero. This is equivalent to searching for an     that 
makes the squares of the auto-cummulants maximum,

 where, is the 4th order auto-cumulant.
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• Step 3: 

➢A hierarchy of components: which ℓ to use? In PCA 
one chooses the principal ones. In ICA one can 
choose the ones with the least resemblance to the 
Gaussian pdf. 

( )ˆ
T

W AA=

characteristic fun. of p(x):

the moment generating function:

the 2nd characteristic function of x:

the nth-order moment of x:

theTaylor expansion of the second generating function results in:

where

are known as the cumulants of the random variable x.

If jΩ is changed into s



FastICA

1.  Centering

2.  Whitening

3.  Choose m, No. of ICs to estimate. Set counter p  1

4.  Choose an initial guess of unit norm for wp, eg. randomly.

5.  Let 

6.  Do deflation decorrelation

7. Let wp  wp/||wp||

8. If wp has not converged (|<wp
k+1 , wp

k>|    1), go to step 5.

9. Set p  p+1. If p  m, go back to step 4.
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The principal component is    , thus according to PCA one 
chooses as y the projection of      into      . According to ICA, 
one chooses as y the projection on     . This is the least 
Gaussian. Indeed:K4(y1) =  -1.7, K4(y2) =   0.1

Observe that across     , the statistics is bimodal. That is, no 
resemblance to Gaussian.

➢Example:

1
x

0

0

1

For a zero mean random variable

 1

2 1

2.6042, 2.5
T

= −

= −

μ

μ μ

01

(kurtosis)



PCA vs ICA



Difference with PCA

❖It is not a dimensionality reduction
technique

❖There is no single (exact) solution for 
components; uses different algorithms
(in R: FastICA, PearsonICA, MLICA)

❖ICs are of course uncorrelated but 
also as independent as possible

❖Uninteresting for Normally distributed
variables



Application domains of ICA

❖ Blind source separation (Bell&Sejnowski, Te won Lee, 
Girolami, Hyvarinen, etc.)

❖ Image denoising (Hyvarinen)

❖Medical signal processing – fMRI, ECG, EEG (Mackeig)

❖Modelling of the hippocampus and visual cortex (Lorincz, 
Hyvarinen)

❖ Feature extraction, face recognition (Marni Bartlett)

❖ Compression, redundancy reduction

❖Watermarking (D Lowe)

❖ Clustering (Girolami, Kolenda)

❖ Time series analysis (Back, Valpola)

❖ Topic extraction (Kolenda, Bingham, Kaban)

❖ Scientific Data Mining (Kaban, etc)



Image denoising

ICA 

filtering

Noisy 

image
Original 

image

Wiener 

filtering



Other Feature Generation Methods

❖ The Singular Value Decomposition (SVD)

❖ The Discrete Fourier Transform (DFT)

❖ The Discrete Cosine And Sine Transforms

❖ The Hadamard Transform

❖ The Haar Transform

❖ Discrete Time Wavelet Transform (DTWT)

❖ The Multiresolution Interpretation

❖Wavelet Packets

❖ Regional Features

❖ Features For Shape And Size Characterization

❖ Typical Features For Speech And Audio Classification

❖…
31
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