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❖Likelihood vs. Discriminant-based Classification

➢Likelihood-based: Assume a model for p(x|ωi), use 

Bayes’ rule to calculate P(ωi|x) 

gi(x) = log P(ωi|x) 

➢Discriminant-based: Assume a model for gi(x|Φi); no 

density estimation.

➢Estimating the boundaries is enough; no need to 

accurately estimate the densities inside the 

boundaries.

Ch3: LINEAR CLASSIFIERS 

(Linear Discriminant Functions) 
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❖ In this chapter, we will focus on the design of linear 
classifiers, regardless of the underlying distributions 
describing the training data. 

❖ The Problem: Consider a two class task with ω1, ω2
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as the weight vector and w0

as the threshold.
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In conclusion, a linear discriminant function divides the 

feature space by a hyperplane decision surface

The orientation of the surface is determined by the normal 

vector w and the location of the surface is determined by the 

bias
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❖ The Perceptron Algorithm

➢ Assume linearly separable classes, i.e.,

➢ The case
falls under the above formulation, since
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➢ Our goal:  Compute a solution, i.e., a hyperplane w,

so that

• The steps

– Define a cost function to be minimized

– Choose an algorithm to minimize the cost 
function

– The minimum corresponds to a solution
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➢The Cost Function

• Where Y is the subset of the vectors wrongly

classified by w. When Y=(empty set) a solution is

achieved and

•

•

•




=
Yx

T

x xwwJ )()( 

0)( =wJ

2

1

  and    if  1

  and    if  1





+=

−=

xYx

xYx

x

x

0)( wJ



8

• J(w) is piecewise linear (WHY?)

➢The Algorithm

• The philosophy of the gradient descent is 
adopted.
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• Wherever valid

•

This is the celebrated Perceptron Algorithm
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The Perceptron Algorithm
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The algorithm also converges for constant ρt=ρ provided ρ is properly bounded.

➢ The perceptron algorithm converges in a finite number 
of iteration steps to a solution if

➢An example:
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➢Example: At some stage t the perceptron algorithm 

results in

The corresponding hyperplane is
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❖ A useful variant of the perceptron algorithm

➢ It is a   reward and punishment type of 
algorithm

❖ Correct classification → the reward is no action.

❖ Incorrect classification → the punishment is the cost 
of correction.
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❖ The perceptron

0
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➢ It is a learning machine that learns from the 
training vectors via the perceptron algorithm.

➢ The network is called perceptron or neuron.
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➢ If classes are linearly separable, the perceptron output 
(±1) were correct for all the training feature vectors.

➢ If classes are NOT linearly separable, we shall compute 
the weights, so that the difference between

• The actual output of the classifier,          , and

The desired outputs, e.g.
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Least Squares Methods
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➢ SMALL, in the mean square error sense, means to choose        

so that the cost function

w

2  ( ) [( ) ] is minimum

ˆ  arg min ( )
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➢ It can be shown that J(w) is equal to:
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where Rx is the autocorrelation matrix

and the cross-correlation vector
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➢ Minimizing

Orthogonality condition. 

A linear set of equations
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➢Multi-class generalization

• The goal is to compute M linear discriminant functions:

according to the MSE.

• Adopt desired responses (class labels) yi as:

• Let

• And the matrix
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• The goal is to compute    :

• The above is equivalent to a number M of MSE minimization 
problems. That is:

Design each      so that its desired output is 1 for           and 0 
for any other class.

➢ Remark: The MSE criterion belongs to a more general class of 
cost function with the following important property:

• The value of          is an estimate, in the MSE sense, of the 

a-posteriori probability              ,  provided that the desired 
responses used during training are                    and 0
otherwise.
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❖ A criterion closely related to the MSE is the sum of error squares
or simply the least squares (LS) criterion.

❖ SMALL in the sum of error squares sense means

➢

, that is, the input xi and its

corresponding class label  (±1).
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❖ Pseudoinverse Matrix

➢ Define
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Thus

➢ Assume              X square and invertible.  Then
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➢ Assume Then, in general, there is no solution to

satisfy all equations simultaneously:

➢ The “solution” corresponds to the minimum
sum of squares solution

➢ Assume

1 1

2 2:          equations unknowns
....

T

T

T

N N

x w y

x w y
X w y N l 

x w y

 =


=
= 




=

w X y+=

N l

N l

1ˆ ( )T Tw X XX y X y− += = minimum norm solution

the undetermined problem

the overdetermined system



24

➢ Example: 0.4 0.5 1 1
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Multiple Classes (Revisited)

( )0 0| ,
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0 otherwise
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Classes are linearly separable

( ) / iz g x w=Remembering that                               is the distance from the input point to the 

hyperplane, assuming that all wi have similar length, this assigns the point to the 

class (among all gj (x) > 0) to whose hyperplane the point is most distant.
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A classifier        is a learning machine that tries to predict
the class label y of    . In practice, a finite data set D is used 

for its training. Let us write           . Observe that:

➢ For some training sets,                                    ,  the 
training may result to good estimates, for some others
the result may be worse.

➢ The average performance of the classifier can be tested 
against the MSE optimal value, in the mean squares 
sense, that is:

where ED is the mean over all possible data sets D.
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The Bias – Variance Dilemma
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❖ The above is written as:

❖ In the above, the first term is the contribution of the 
bias and the second term is the contribution of the 
variance.

❖ For a finite D, there is a trade-off between the two 
terms. Increasing the bias, decreases the variance and 
vice verse. This is known as the bias-variance dilemma.

❖ Using a complex model results in low-bias but a high 
variance, as one changes from one training set to 
another. Using a simple model results in high bias but 
low variance.
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g1(x) is a polynomial

of high degree

→ High bias, zero variance

→ zero bias, variance is equal to the variance  of the noise



From Discriminants to Posteriors 
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When p (x | ωi ) ~ N( μi , ∑)

the logit transformation or log odds of z
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The logit maps the [0, 1] interval onto the real line. In logistic classification, 

the posterior-probability function is linear in logit space. Why? →…
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The inverse of logit, log   is the logistic function, 

1 |

also called the sigmoid function
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Sigmoid (Logistic) Function
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Two classes: Assume log likelihood ratio is linear (we do not 

model the class-conditional densities but rather their ratio.)

LOGISTIC DISCRIMINATION (M = 2) 



Training: Two Classes
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We assume , given  is Bernoulli i.e.   | ~ Bernoulli  
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This is a system of l + 1 highly nonlinear equations, 

which must be solved by iterative numerical methods. 



Gradient-Descent

37

❖E(w|X) is error with parameters w on sample X

w*=arg minw E(w | X)

❖Gradient

❖Gradient-descent: 

Starts from random w and updates w iteratively in 
the negative direction of gradient

1 2
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note: xi0=+1 for all i
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10

100 1000

To get outputs of 0 and 1, the sigmoid hardens, which is achieved by increasing 

the magnitude of w, or ||w|| in the multivariate case.

To minimize the number of misclassifications, we do not need to continue 

learning until all yi are 0 or 1, but only until yi are less than or greater than 0.5.

STOPPING EARLY, REGULARIZATION, GENERALIZATION.
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❖Let an M-class task,                    . In logistic 

discrimination, the logarithm of the likelihood ratios

are modeled via linear functions, i.e.,

❖Taking into account that 

it can be easily shown that the above is equivalent with 

modeling posterior probabilities as:
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LOGISTIC DISCRIMINATION (M > 2) 
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❖ For the two-class case it turns out that

❖ The unknown parameters                                               are 

usually estimated by maximum likelihood arguments.

( )
( )

−

=

++

=
1

1

0,exp1

1
|

M

i

T

ii

M

xww

xP 

( )
( )

( )

,0

1

,0

1

exp
| ,   1,2,..., 1

1 exp

T

ii

i M
T

ii

i

w w x
P x i M

w w x


−

=

+
= = −

+ +

( )
( )

2

0

1
|  

1 exp
T

P x
w w x

 =
+ +

( )
( )
( )

0

1

0

exp
|  

1 exp

T

T

w w x
P x

w w x


+
=

+ +

,0,  ,   1 2  1i iw w i , , ..., M -=

softmax



Training: Multiple Classes (M > 2) 

43

( )

( )
( )

( )

 ( ) ( )
( )

 ( )

,0

1

,0

1

,0

1 1

,0

1 1

We assume , given  is Multinomial i.e.   | ~ 1,  

exp
| , 1, ,

1 exp

, |

log

, | log

ji

j j j j M

T

ii

i i M
T

ii

i

N M
y

i i jii
j i

N M

i i ji jii
j i

Mult

w w x
z P x i M

w w x

l w z

E l

E w y z


−

=

= =

= =

+
= = =

+ +

=

= −

= −







y x y x z

w

w

X

X

Maximize l ≡Minimize Ecross-entropy

We are given samples of M classes,    
1

, ,  1,0
N

j j jij
X y

=
= x y

Estimates wi and wi,0 of the logistic curve coefficients are typically obtained by maximizing the 

conditional log-likelihood l (minimizing E) which lead to a system of highly nonlinear equations. 
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where  is Kronecker delta, which 1 if  and 0 if ij i j i j = 

The discriminants are updated so that the correct class has the highest weighted sum 

after softmax, and the other classes have their weighted sums as low as possible.
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( )1 2| ,iP x x

( )1 2,ig x x

Thin lines are where gi(x) = 0, 

and the thick line is the boundary 

induced by the linear classifier 

choosing the maximum.
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❖ Logistic discrimination is a useful tool, since it allows linear 

modeling and at the same time ensures posterior probabilities 

to add to one.(xk
(m), k=1,2,…,Nm are from class m.)

Any optimization algorithm can then be 

used to perform the required maximization.
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Note: Under the Gaussian assumption and for equal covariance matrices 

across all classes the following holds true
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➢ The goal:  Given two linearly separable classes, design 
the classifier

that leaves the maximum margin from both classes

0)( 0 =+= wxwxg
T

Support Vector Machines
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➢ Margin:  Each hyperplane is characterized by

• Its direction in space, i.e., 

• Its position in space, i.e.,

• For EACH direction, , choose the hyperplane that 
leaves the SAME distance from the nearest points 
from each class. The margin is twice this distance.

➢Our goal is to search for the direction that gives 
the maximum possible margin. 

w

0w

w
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➢ The distance of a point from a hyperplane
is given by

➢ Scale, so that at the nearest points from
each class the discriminant function is ±1:

➢ Thus the margin is given by

➢ Also, the following is valid
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➢ SVM (linear) classifier

➢ Minimize

➢ Subject to

➢ The above is justified since by  minimizing

the margin        is maximized
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The above is a nonlinear (quadratic) optimization task,
subject to a set of linear inequality constraints.  The 
Karush-Kuhn-Tucker (KKT) conditions state that the 
minimizer satisfies:

(1)                                   (2)

(3)

(4)

Where L(.) is the Lagrangian function
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➢ The solution to the constrained-optimization problem is 
determined by the saddle point of the Lagrangian
function L(w, w0, λ). 

➢ A saddle point of a Lagrangian is a point where the 
roots are real, but of opposite signs; such a singularity 
is always unstable.

➢ The saddle point has to be minimized with respect to w
and w0; it also has to be maximized with respect to λ. 

➢ Application of optimality condition 1 to the Lagrangian
function yields the following

➢ Application of optimality condition 2 to the Lagrangian
function yields
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Remarks:

➢The Lagrange multipliers can be either zero or
positive. Thus,

where , corresponding to positive Lagrange
multipliers

➢ It is also important to note that for all the constraints
that are not satisfied as equalities, the corresponding
multiplier λi must be zero.

➢ the vectors contributing to satisfy

ii
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i

i xyw
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❖ These vectors are known as SUPPORT VECTORS and are the
closest vectors, from each class, to the classifier.

❖ Once is computed, is determined from conditions (4).

❖ The optimal hyperplane classifier of a SVM is UNIQUE.

❖ Although the solution is unique, the resulting Lagrange
multipliers are not unique.

❖ Feature vectors corresponding to λi=0 can either lie outside the
“class separation band,” defined as the region between the two
hyperplanes, or they can also lie on one of these hyperplanes.

❖ Although is explicitly given, can be implicitly obtained by
any of the (complementary slackness) conditions.

w 0w
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❖ Dual Problem Formulation

➢The SVM formulation is a convex programming 
problem, with

• Convex cost function

• Convex region of feasible solutions

➢Thus, its solution can be achieved by its dual 
problem, i.e.,

• Maximize                     respect to λ

• subject to
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❖Combine the above to obtain

❖We may now state the dual problem as follows:
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❖Given the training sample                                  find 

the Lagrange multipliers               that maximize the  

objective function  

➢ subject to

➢Remarks:

• Support vectors enter  into the game in pairs, in the 

form of inner products
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❖ Non-Separable classes

In this case, there is no hyperplane such that

➢ Recall that the margin is defined as the distance 
between the following two hyperplanes

0 01  and  1 
T T

w x w w x w+ = + = −

0( ) 1,   1,  2,  ...,  
T

iiy w x w i N+  =



59

❖ The training vectors belong to one of  three possible 
categories

1) Vectors outside the band which are correctly
classified, i.e.,

2) Vectors inside the band, and correctly classified,  i.e.,

3) Vectors misclassified, i.e.,

➢All three cases above can be represented as
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are known as slack variablesi
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❖ The goal of the optimization is now two-fold

➢Maximize margin

➢Minimize the number of patterns with ξi >0,

One way to achieve this goal is via the cost

where C is a constant and

➢ I(.) is not differentiable.  In practice, we use an approximation

➢Following a similar procedure as before we obtain
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➢ The corresponding Lagrangian is given by

➢ KKT conditions are:
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The associated Wolfe dual representation now becomes

0Maximize  ( , , , , )L w w   
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➢ The associated dual problem

subject to

➢ Remarks: The only difference with the separable
class case is the existence of C in the 

constraints
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➢Training the SVM

A major problem is the high computational cost. 
To this end, decomposition techniques are used. 
The rationale behind them consists of the 
following:

• Start with an arbitrary data subset (working 
set) that can fit in the memory. Perform 
optimization, via a general purpose optimizer.

• Resulting support vectors remain in the 
working set, while others are replaced by new 
ones (outside the set) that violate severely the 
KKT conditions.

• Repeat the procedure.

• The above procedure guarantees that the cost 
function decreases.
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❖ Example: Two nonseparable classes and the resulting SVM linear 

classifier (full line) with the associated margin (dotted lines) for 

the values (a) C =0.2 and (b) C =1000. In the latter case, the 

location and direction of the classifier as well as the width of the 

margin have changed in order to include a smaller number of 

points inside the margin.

➢ Observe the effect of different values of C in the case of non-

separable classes.

C  = 0.2 C =1000
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In classifying an instance, there are four possible cases: In (a), the 

instance is on the correct side and far away from the margin; yi g(xi)>1, 

ξ i = 0. In (b), yi g(xi)=1,ξi = 0; it is on the right side and on the margin. 

In (c), ξ i =1− yi g(xi), 0 < ξ i < 1; it is on the right side but is in the 

margin and not sufficiently away. In (d), ξ i=1 − yi g(xi) > 1; it is on the 

wrong side—this is a misclassification. All cases except (a) are support 

vectors. In terms of the dual variable, in (a), λi = 0; in (b), λi < C; in (c) 

and (d), λi = C.



Machine Learning- Srihari
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❖Multi-class generalization

Although theoretical generalizations exist, the most popular in 

practice is to look at the problem as M two-class problems (one 

against all).

➢ For each one of the classes, we seek to design an optimal 

discriminant function,

➢ Classification rule: 

➢ This technique, however, may lead to indeterminate regions 

→one-against-one approach, error correcting coding approach 

and extending the two class SVM mathematical formulation to 

the M-class problem.

❖ Error Correcting Coding method: M-class, L binary classifiers. 

The HD of the code word is measured against the M code words.

( ),   1,2, ,  so that ( ) ( ), ,  if i i j ig x i M g x g x j i x

assign  in  if  = arg max ( )i k
k

x i g x



ν-SVM

❖ Involve margin in a more direct way in the cost function, 

instead of leaving its control to a parameter (i.e., C ).

❖ The margin is defined by the pair of hyperplanes

and ρ ≥ 0 is left as a free variable to be optimized.

❖We simply count and average the number of points with ξi > 0, 

whose number is now controlled by the margin variable ρ. The 

parameter ν (0≤ ν ≤ 1) controls the influence of ρ. 
69
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Adopting similar steps the following KKT conditions result: 

The corresponding Lagrangian is given by
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0Maximize  ( , , , , , , )L w w     

The associated Wolfe dual representation now becomes
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(3)  ,  1, 2,..., ,    (4) 

(5)  0,   0,  0  1,2,...,

N N

ii i i i

i i

N

i i i

i

i i

w λ y x λ y

i N λ
N

i N

   

  

= =

=

= =

+ = = − =

   =

 



Subject to:
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1 1

Maximize
1

 
2

N N
T

i ji j i j

i j

y y x x 
 = =

− 

Once more, only the Lagrange multipliers λ enter into 

the problem explicitly, and ρ and the slack variables, ξi , 

make their presence felt through the bounds appearing in 

the constraints. ν has been shown to be a lower bound on 

the fraction of support vectors and an upper bound on 

the fraction of instances having margin errors.

1 1

1
(1)  0 ,  1,2,..., ,

(2)  0,   (3) 

i

N N

i i i

i i

λ i N
N

λ y λ 
= =

  =

=  

Subject to:

If we substitute the equality constraints in the Lagrangian, 

the dual problem becomes equivalent to:
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C = 10000

The broken purple curve in the background is the Bayes decision boundary.
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C = 0.01

The broken purple curve in the background is the Bayes decision boundary.
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