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Textbooks

❖ Pattern Recognition, 4th Ed., Theodoridis and 
Koutroumbas

❖ Pattern Classification (2nd ed.) by Richard O. 
Duda,  Peter E. Hart and David G. Stork

❖ Pattern Recognition and Machine Learning, 
Bishop

❖ The elements of statistical learning Data mining, inference, and 
prediction  2008-Trevor Hastie et al.

❖ Murphy, Machine Learning A Probabilistic Perspective

❖ Statistical Pattern Recognition, 3rd Ed. Andrew R. Webb And Keith 
D. Copsey

❖ Introduction to Statistical Pattern Recognition, 2nd Ed., Fukunaga

❖ A Statistical Approach to Neural Networks for Pattern 
Recognition, R. A. Dunne.
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Grading Criteria

❖ Midterm Exam ≈ 25%±5%

❖ HW, Comp. Assignments and projects: ≈ 30%

❖ Final exam ≈ 45%±5%

❖ Course Website:

❖ http://yekta.iut.ac.ir or http://elearning.iut.ac.ir/

❖ Email: Ahmadzadeh@iut.ac.ir

❖ Skype Name: live:ahmadzadeh.m_2

❖ Skype Group: See course website 
How do I hand in homework? Hardcopy or electronic 
version (single file in pdf and LMS only- no email 
please). Losing 30% of the grade for every week of 
late submission.
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PATTERN RECOGNITION

❖ Typical application areas

➢Machine vision

➢Character recognition (OCR)

➢Computer aided diagnosis

➢Speech recognition

➢Face recognition

➢Biometrics

➢ Image Data Base retrieval

➢Data mining

➢Bioinformatics
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Statistical Pattern Recognition

❖1. Introduction

❖2. Classifiers based on Bayes Decision

❖3. Linear Classifiers

❖4. Nonlinear Classifiers

❖5. Feature Selection

❖6. Feature Generation I: Data Transformation  
and Dimensionality Reduction

❖7. Feature Generation II

❖8. Template Matching
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❖9. Context Dependent Clarification

❖10. Supervised Learning

❖11. Clustering: Basic Concepts

❖12. Clustering Algorithms I: Sequential

❖13. Clustering Algorithms II: Hierarchical

❖14. Clustering Algorithms III: Based on 
Function Optimization

❖15. Clustering Algorithms IV:

❖16. Cluster Validity
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What is a Pattern?

❖ “A pattern is the opposite of a chaos; it is an entity vaguely 
defined, that could be given a name.” (Watanabe)

8

http://www.cse.msu.edu/~anoop


Recognition

❖ Identification of a pattern as a member of a category we 
already know, or we are familiar with

➢ Classification (known categories)

➢ Clustering (creation of new categories)

❖ The task:  Assign unknown objects – patterns – into the correct 
class.  This is known as classification.
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❖Category “A”

❖Category “B”

❖Classification
❖Clustering



Pattern Recognition
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• Given an input pattern, make a decision 

about the “category” or “class” of the pattern

• Pattern recognition is  a very broad subject 

with many applications

• In this course we will study a variety of 

techniques to solve P.R. problems and 

discuss their relative strengths and 

weaknesses



Pattern Class

❖A collection of “similar” (not necessarily 
identical) objects

❖A class is defined by class samples 
(paradigms, exemplars, prototypes)

❖Inter-class variability

❖Intra-class variability
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Pattern Class Model

❖ Different descriptions, which are typically 
mathematical in form for each 
class/population

❖ Given a pattern, choose the best-fitting 
model for it and then assign it to class 
associated with the model
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Pattern Recognition Applications
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Problem Input Output

Speech recognition Speech waveforms Spoken words, speaker 

identity

Non-destructive testing Ultrasound, eddy current, 

acoustic emission waveforms

Presence/absence of flaw, 

type of flaw

Detection and diagnosis 

of disease

EKG, EEG waveforms Types of cardiac 

conditions, classes of 

brain conditions

Natural resource 

identification

Multispectral images Terrain forms, vegetation 

cover

Aerial reconnaissance Visual, infrared, radar images Tanks, airfields

Character recognition 

(page readers, zip code, 

license plate)

Optical scanned image Alphanumeric characters



Pattern Recognition Applications
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Problem Input Output

Identification and 

counting of cells

Slides of blood samples, 

micro-sections of tissues

Type of cells

Inspection (PC boards, IC 

masks, textiles)

Scanned image (visible, 

infrared)

Acceptable/unacceptable

Manufacturing 3-D images (structured light, 

laser, stereo)

Identify objects, pose, 

assembly

Web search Key words specified by a user Text relevant to the user

Fingerprint identification Input image from fingerprint 

sensors

Owner of the fingerprint, 

fingerprint classes

Online handwriting 

retrieval

Query word written by a user Occurrence of the word in 

the database



Pattern Classification

Statistical Approach Non-Statistical Approach

Supervised Unsupervised

Basic concepts: 
Distance
Agglomerative method

Basic concepts:
Baysian decision rule 
(MPP, LR, Discri.)

Parameter estimate (ML, BL)

Non-Parametric learning (kNN)

LDF (Perceptron) 

k-means

Winner-takes-all

Kohonen maps

Dimensionality 
Reduction

FLD, PCA

Performance Evaluation
ROC curve (TP, TN, FN, FP)
cross validation

Classifier Fusion
majority voting
NB, BKS

Stochastic Methods
local opt (GD)
global opt (SA, GA)

Decision-tree

Syntactic approach

NN (BP)

Support Vector Machine

Deep Learning (DL)

Mean-shift



An Example

“Sorting incoming Fish on a conveyor according 

to species using optical sensing”

Sea bass

Species

Salmon
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❖Problem Analysis

➢Set up a camera and take some sample images 

to extract features

• Length

• Lightness

• Width

• Number and shape of fins

• Position of the mouth, etc…

This is the set of all suggested features to explore for 

use in our classifier!
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❖ Preprocessing

➢Use a segmentation operation to isolate fishes from one 
another and from the background

❖Information from a single fish is sent to a feature 
extractor whose purpose is to reduce the data by 
measuring certain features

❖The features are passed to a classifier
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❖Histograms for the length feature for the two categories. No 

single threshold value l* (decision boundary) will serve to 

unambiguously discriminate between the two categories; using 

length alone, we will have some errors. The value l* marked will 

lead to the smallest number of errors, on average.

❖Classification: Select the length of the fish as a 

possible feature for discrimination
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The length is a poor feature alone!

Select the lightness as a possible feature.

❖Histograms for the lightness feature for the two categories. No 

single threshold value x*  (decision boundary) will serve to 

unambiguously discriminate between the two categories;  using 

lightness alone, we will have some errors. The value x* marked 

will lead to the smallest number of errors, on average.



❖Adopt the lightness and add the width of the fish

Fish x=x = [x1, x2]
T
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❖Lightness ❖Width

❖We realize that the feature extractor has thus 

reduced the image of each fish to a point or feature 

vector x in a two-dimensional  feature space.
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❖ Features: These are measurable quantities obtained from 

the patterns, and the classification task is based on their 
respective values.

❖Feature vectors: A number of features 

constitute the feature vector 

Feature vectors are treated as random vectors.

1,..., lx x

  lT

l Rxxx = ,...,1
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❖The two features of lightness and width for sea bass and salmon. The 

dark line might serve as a decision boundary of our classifier. Overall 

classification error on the data shown is lower than if we use only one 

feature as in Fig. 1.3, but there will still be some errors.



❖ The classifier consists of a set of functions, whose values, 
computed at    , determine the class to which the 
corresponding pattern belongs

❖ Classification system overview
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x

sensor

feature
generation

feature 
selection

classifier
design

system
evaluation

Patterns
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❖Fingerprint Classification

❖Assign fingerprints into one of pre-specified
types

❖Plain Arch ❖Tented Arch ❖Right Loop ❖Left Loop

❖Accidental ❖Pocket Whorl ❖Plain Whorl ❖Double Loop
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❖Fingerprint Enhancement

❖Noisy image ❖Enhanced image

• To address the problem of poor quality fingerprints



The Design Cycle

❖ Data collection

❖ Feature Choice

❖Model Choice

❖ Training

❖ Evaluation

❖ Computational Complexity
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❖ Supervised – unsupervised pattern recognition: 
The two major directions

➢ Supervised:  Patterns whose class is known a-priori 
are used for training.

➢ Unsupervised:  The number of classes is (in general) 
unknown and no training patterns are available.

➢ Reinforcement Learning

• In reinforcement learning or learning with a critic, 
no desired category signal is given; critic instead, 
the only teaching feedback is that the tentative 
category is right or wrong.

• This is analogous to a critic who merely states that 
something is right or wrong, but does not say 
specifically how it is wrong.
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CLASSIFIERS BASED ON BAYES DECISION 
THEORY

❖ Statistical nature of feature vectors

❖ Assign the pattern represented by feature vector 
to the most probable of the available classes

That is
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 Tl21 x,...,x,xx =

x

1 2, , , M  

( )
maximum

  :  |i ix P x →



❖Computation of a-posteriori probabilities

➢Assume known

• a-priori probabilities

•

This is  also known as the likelihood of 

)()...,(),(
21 M

PPP 

( ),     1,2...ip x i M =
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❖ The Bayes classification rule (for two classes M=2)

➢ Given classify it according to the rule

➢ Equivalently:  classify according to the rule 

➢ For equiprobable classes the test becomes

x
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❖ Equivalently in words:  Divide space in two regions 

❖ Probability of error

➢ Total shaded area

➢

❖ Bayesian classifier is OPTIMAL with respect to 
minimizing the classification error probability!!!!
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➢ Indeed:  Moving the threshold the total shaded 
area INCREASES by the extra “grey” area.
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An Introduction to Pattern Recognition and Machine Learning-Paul Fieguth(2022)
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Figure 2.1: Hypothetical class-conditional probability density

functions show the probability density of measuring a particular

feature value x given the pattern is in category ωi. If x represents

the length of a fish, the two curves might describe the difference

in length of populations of two types of fish. Density functions are

normalized, and thus the area under each curve is 1.0.
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Figure 2.2: Posterior probabilities for the particular priors P(ω1) = 2/3 and 

P(ω2) =1/3 for the class-conditional probability densities shown in Fig. 2.1. 

Thus in this case, given that a pattern is measured to have feature value x = 

14, the probability it is in category ω2 is roughly 0.08, and that it is in ω1 is 

0.92.   At every x, the posteriors sum to 1.0



❖ The Bayes classification rule for many (M>2) classes:

➢ Given     classify it to      if:

➢Such a choice also minimizes the classification error 
probability

❖ Minimizing the average risk

➢ For each wrong decision, a penalty term is assigned since 
some decisions are more sensitive than others

ijxPxP ji    )()( 
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➢For M=2
• Define the loss matrix

• penalty term for deciding class      ,
although the pattern belongs to       ,  etc.

➢Risk with respect to

2
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➢Risk with respect to 

➢

➢Average risk


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2
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)()( 2222212
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Probabilities of wrong decisions, 
weighted by the penalty terms



M-class problem
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The risk or loss associated with ωk is defined as
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● If λki =1-δki, where δki is Kronecker’s delta (0 if k≠i and 1 if 

k=i), then minimizing the average risk becomes equivalent to 

minimizing the classification error probability.



❖ Choose     and      so that r is minimized

❖

❖ Then assign      to       if l1< l2 or

❖ Equivalently:

assign x to               if

:likelihood ratio
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❖ An example:
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➢Then the threshold value is:

➢Threshold for minimum r
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Thus       moves to the left of 

(WHY?)
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❖Allowing actions other than classification primarily 
allows the possibility of rejection, i.e., of refusing to 
make a decision in close cases; this is a useful option 
if being indecisive is not too costly.

Rejection
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R, a reject region

A, an acceptance or 

classification region

where t is a threshold.

Illustration of 

acceptance and 

reject regions.



DISCRIMINANT FUNCTIONS 
DECISION SURFACES

❖ If are contiguous:

is the surface separating the regions.  On one side is 
positive (+), on the other is negative (-). It is known 
as  Decision Surface.

)()(  :

)()(  :

xPxPR
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ijj

jii
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❖ If f(.) monotonic, the rule remains the same if we use:

❖ is a discriminant function

❖ In general, discriminant functions can be defined 
independent of the Bayesian rule.  They lead to 
suboptimal solutions, yet if chosen appropriately,        
can be computationally more tractable.
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BAYESIAN CLASSIFIER FOR NORMAL 
DISTRIBUTIONS

❖ Univariate Gaussian pdf
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FIGURE 2.7. A univariate normal distribution has roughly 95% 

of its area in the range |x − μ| ≤ 2, as shown. The peak of the 

distribution has value ( ) 1 ( 2  )p   =



BAYESIAN CLASSIFIER FOR NORMAL 
DISTRIBUTIONS

❖Multivariate Gaussian pdf

called covariance matrix
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The graph of a two-dimensional Gaussian pdf and the 

corresponding isovalue curves for a diagonal Σ with                                

The graph has a spherical symmetry showing no preference in any 

direction.



56

(a) The graph of a two-dimensional Gaussian pdf and 

(b) the corresponding isovalue curves for a diagonal Σ with                          

The graph is elongated along the x1 direction.
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(a) The graph of a two-dimensional Gaussian pdf and 

(b) the corresponding isovalue curves for a diagonal Σ with                         

The graph is elongated along the x2 direction.
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(a) The graph of a two-dimensional Gaussian pdf and 

(b) the corresponding isovalue curves for a case of a nondiagonal 

Σ. Playing with the values of the elements of Σ one can 

achieve different shapes and orientations



Properties

❖The covariance matrix Σ is always symmetric and 

positive semidefinite.

❖(A matrix A is pos. semidefinite if:                 for 

any z.)

❖In the case in which Σ is positive definite, the 

determinant of Σ is strictly positive.

❖The diagonal elements σii are the variances of the 

respective xi (i.e., σ2
i ), and the off-diagonal 

elements σij are the covariances of xi and xj .

❖If xi and xj are statistically independent, ij = 0.
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❖Linear combinations of jointly normally 

distributed random variables, independent or not, 

are normally distributed.

❖If A is a l-by-k matrix and y = At x is a k-

component vector, then p(y) ~ N(At μ,At ΣA)

❖In the special case where k = 1 and A is a unit-

length vector a, y = at x is a scalar that represents 

the projection of x onto a line in the direction of a;

in that case at Σa is the variance of the projection 

of x onto a.
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 1 2

t

t

,   eigenvectors ( ) of distinct eigenvalues are orthognal
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❖Whitening Transformation



❖If we define Φ to be the matrix whose columns are 

the orthonormal eigenvectors of Σ, and Λ the 

diagonal matrix of the corresponding eigenvalues, 

then the transformation Aw = ΦΛ−1/2 applied to the 

coordinates insures that the transformed 

distribution has covariance matrix equal to the 

identity matrix. 

❖In signal processing, the transform Aw is called a 

whitening transformation, since it makes the 

spectrum of eigenvectors of the transformed 

distribution uniform.
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❖The multivariate normal density is completely 

specified by l + l (l + 1)/ 2 parameters — the 

elements of the mean vector μ and the independent 

elements of the covariance matrix Σ.

❖Samples drawn from a normal population tend to fall 

in a single cloud or cluster (Fig. 2.9); the center of 

the cluster is determined by the mean vector, and the 

shape of the cluster is determined by the covariance 

matrix.
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FIG. 2.8. The action of a linear

transformation on the feature

space will convert an arbitrary

normal distribution into another

normal distribution. One

transformation, A, takes the

source distribution into

distribution N(Atμ, AtΣA).

Another linear transformation a

projection P onto a line defined

by vector a leads to

measured along that line. While

the transforms yield distributions

in a different space, we show

them superimposed on the

original x1- x2 space. A whitening

transform, Aw, leads to a

circularly symmetric Gaussian,

here shown displaced.

2( , )N
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FIGURE 2.9. Samples drawn from a two-dimensional Gaussian

lie in a cloud centered on the mean. The ellipses show lines of 

equal probability density of the Gaussian.
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1 1

2 2

    

    

or

or

φ

φ

v

v
❖eigenvectors

Eigenvalues and 
eigenvectors of  a 

distribution.

Whitening process



Sample generation

❖To generate samples which are to be normally distributed 

according  to a given expected vector μ and covariance 

matrix Σ.

❖From the given Σ,  find the whitening transformation of

In  the transformed  space, Σy=I. 

❖Generate  N independent, normally distributed  numbers  

for  each yi (i=1, .  .  .  , l) with zero expected value and 

unit variance. Then, form N vectors y1, y2, . . .  ,yN. 

❖Transform  back  the generated samples  to  the x-space  by 

❖ Add μ to the samples  in the x-space as xk+ μ (k=1,  ..., N).
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BAYESIAN CLASSIFIER FOR NORMAL 
DISTRIBUTIONS

❖ln(.)  is monotonic.  Define:
❖

➢

➢

➢ Example:
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➢

That is, is quadratic and the surfaces  

quadrics, ellipsoids, parabolas, hyperbolas, 
pairs of lines. For example:
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❖ Decision Hyperplanes

➢Quadratic terms:

If ALL (the same) the quadratic
terms are not of interest. They are not
involved in comparisons. Then, equivalently,
we can write:

Discriminant functions are LINEAR 70
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FIG. 2.10. If the cov. matrices for two dist.s are 

equal and proportional to the identity matrix, then 

the distributions are spherical in d-dim, and the 

boundary is a generalized hyperplane of l −1 

dimensions, perpendicular to the line separating 

the means. In these 1-, 2-, and 3-dim. examples, 

we indicate p(x|ωi) and the boundaries for the 

case P(ω1) = P(ω2). In the 3-dim. case, the grid 

plane separates R1 from R2.



➢Nondiagonal:

•

•

•

➢Decision hyperplane

73

 2

0)()( 0 =−= xxwxg
T

ij

)(1

ji
w  −= −

2

1

1

20

)(

)
)(

)(
(n)(

2

1

1

1

xxx

P

P
x

T

ji

ji

j

i

ji

−




−

−
−+=

−

−







 

)(  tonormal

  tonormalnot 

1

ji

ji





−

−

−

where



74

FIGURE 2.12. Probability densities (indicated by the surfaces 

in two dimensions and ellipsoidal surfaces in three dimensions)

and decision regions for equal but asymmetric Gaussian 

distributions. The decision hyperplanes need not be 

perpendicular to the line connecting the means.
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FIGURE 2.8 An example of the pdfs of two equiprobable classes in the two-

dimensional space. The feature vectors in both classes are normally distributed 

with different covariance matrices. In this case, the decision curve is an ellipse 

and it is shown in Figure 2.7a. The coloring indicates the areas where the value of 

the respective pdf is larger
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FIGURE 2.9 An example of the pdfs of two equiprobable classes in the 2D space. 
The feature vectors in both classes are normally distributed with different 
covariance matrices. In this case, the decision curve is a hyperbola and it is 
shown in Figure 2.7b.
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FIGURE 2.12 An example of two Gaussian pdfs with the same covariance matrix 
in the two-dimensional space. Each one of them is associated with one of two 
equiprobable classes. In this case, the decision curve is a straight line.



❖ Minimum Distance Classifiers

➢ equiprobable

➢

➢

Euclidean Distance:

smaller

➢

Mahalanobis Distance:

smaller 78
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Which distance is “correct”? . . . The Euclidean distance in km-kg

space (blue), or the Euclidean distance in mile-pound space (green)?

The MAHALANOBIS DISTANCE is based on fitting a hyper-

ellipse to a class, such that the hyper-ellipse 

represents a distance of one standard deviation 

from the class mean (red dot). Two contours of 

constant distance from the mean are shown, with 

contours ζ = 1 (blue) and ζ = 2 (green). 

An Introduction to Pattern Recognition and Machine Learning-Paul Fieguth(2022)



FIG 2.13 Curves of (a) equal Euclidean distance and (b) equal Mahalanobis distance 

from the mean points of each class. In the two-dimensional space, they are circles in 

the case of Euclidean distance and ellipses in the case of Mahalanobis distance. 

Observe that in the latter case the decision line is no longer orthogonal to the line 

segment joining the mean values. It turns according to the shape of the ellipses.
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❖ The volume of the hyperellipsoid corresponding to a 

Mahalanobis distance r  is given by

where Vl is the volume of a l-dimensional unit hypersphere:

2 2 1( ) ( )T

md r −= = − −x μ Σ x μ

The contours of constant density are hyperellipsoids of constant

Mahalanobis distance to μ and the volume of these hyperellipsoids 

measures the scatter of the samples about the mean.
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FIGURE 2.16. The decision regions for four normal 

distributions. Even with such a low number of categories, 

the shapes of the boundary regions can be rather complex.
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Example 1: Decision regions for two-dimensional Gaussian data



85

Example 1: Decision regions for two-dimensional Gaussian data
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❖ 1- Maximum Likelihood

➢

➢

➢

➢
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Asymptotically unbiased

consistent
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0
  

2
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If, indeed, there is a  such that

    ( ) ( ; ), then

    lim [ ]  

ˆ   lim 0

ML
N

ML
N

p x p x

E

E

The ML estimator is unbiased, is normally distributed, 

and has the minimum possible variance. However, all 

these nice properties are valid only for large values of N.



❖ Example:
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❖ work example 2.3 textbook p 42
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Wrong!!!
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ML Estimation: 

Gaussian Case: unknown  and 

 = (1, 2)
T = (, 2)T single point
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Summation (Applying above eq. to the full log-

likelihood leads to the conditions):

Combining (1) and (2), one obtains (By substituting                   

and doing a little rearranging):
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The multivariate case

1

1

1
ˆ

1ˆ ˆ ˆ( )( )

N

k
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N
T

k k

k

N

N

μ x

Σ x μ x μ

The maximum likelihood estimate for the mean vector

is the sample mean.

The maximum likelihood estimate for the covariance

matrix is the arithmetic average of the N matrices
(𝐱𝑘 − ෝ𝛍)(𝐱𝑘 − ෝ𝛍)𝑇 .



❖ 2- Maximum Aposteriori Probability Estimation

➢ In ML method, θ was considered as a parameter

➢Here we shall look at θ as a random vector
described by a pdf p(θ), assumed to be known

➢Given

Compute the maximum of 

➢From Bayes theorem
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➢The method:
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FIGURE 2.15 ML and MAP estimates of θ will be approximately the 

same in (a) and different in (b).



❖ Example:
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❖3- Bayesian Inference

➢

How??
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FIGURE 2.16 A sequence of the posterior pdf estimates (Eq. (2.73)), for the case of Example
2.6. As the number of training points increases, the posterior pdf becomes more spiky (the
ambiguity decreases) and its center moves toward the true mean value of the data.

Data were generated using a pseudorandom number generator following a Gaussian pdf with
mean value equal to μ=2 and variance σ2=4.

μ0=0 and variance σ0
2=8
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3- Bayesian Inference: The Multivariate Case

❖The treatment of the multivariate case in which Σ is 

known but μ is not, is a direct generalization of the 

univariate case.

❖where Σ, Σ0, and μ0 are assumed to be known.

❖After observing a set X of n independent samples    

x1, ..., xn, we use Bayes’ formula to obtain
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which has the form

Thus, p(μ|X) ~ N(μN, ΣN), and once again we have a reproducing

density.
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p(x|X) ~ N(μN, Σ+ΣN) 



❖ 4- Maximum Entropy

➢Entropy is a measure of the uncertainty concerning an 
event and, from another view point, a measure of 
randomness of the messages (feature vectors in our 
case) occurring at the output of a system.

➢ If p(x) is the density function, the associated entropy H

is given by:

➢

109

xdxpxpH )(ln)(−=

ˆ ( ) :p x

According to the principle of maximum entropy, such an 
estimate corresponds to the distribution that exhibits the 
highest possible  randomness, subject to the available 
constraints.

Maximum H subject to the available constraints



❖ Example: x is nonzero in the interval

and zero otherwise.  Compute the ME pdf

➢ The constraint:

➢ Lagrange Multipliers …

1 2

2 1

   1

ˆ ˆ( ) exp( 1)            ( )

0 otherwise

x x x

x xp x p x

 
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−= − = 


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2

1

ln ( ) 1 0
( )

x

L

x

H
p x dx
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
= − − + =

 

❖It can be shown that the normal distribution has the maximum 
entropy of all distributions having a given mean and variance.
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1

exp( 1) 1

x

x

dx



❖ 5- Mixture Models

➢

➢ Assume parametric modeling, i.e.,

➢The goal is to estimate

given a set

➢Why not ML? As before?
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➢This is a nonlinear problem due to the missing 
label information.  This is a typical problem with 
an incomplete data set.

➢The Expectation-Maximization (EM) algorithm.

• General formulation

which are not observed directly.

We observe 

a many to one transformation
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➢ Let 

➢ What we need is to compute

➢ But           are not observed.  Here comes the EM.  
Maximize the expectation of the log-likelihood
conditioned on the observed samples and the current 
iteration estimate of 
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➢The algorithm:

• E-step:

• M-step:

➢we start from an initial estimate       ,and iterations 
are terminated if                             for an 
appropriately chosen vector norm and

❖Application to the mixture modeling problem

➢Complete data
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❖Observed data

❖

❖Assuming mutual independence among samples of the data set

❖Unknown parameters

❖Taking the expectation over the unobserved data, conditioned on 
the training samples and the current estimates, Θ(t), of the unknown 

parameters, we have:

1, 2,...,,  k k Nx =

( , ; ) ( ; )
kk kk k jp x j p x j P =

1

( ) ln( ( ; ) )
k

N

k k j

k

L p x j P 
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❖ E-step

❖ M-step
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Gaussian Mixture Model (GMM)

118Slide from: Zemel, Urtasun, Fidler (UofT)



119Slide from: Zemel, Urtasun, Fidler (UofT)
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Sampling from a Mixture Model 

Slide from: Robert Collins



121Slide from: Christopher M. Bishop
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Uh-oh, log of a sum

The maximum likelihood solution for the parameters no 
longer has a closed-form analytical solution.

Slide from: Christopher M. Bishop



123

EM Algorithm

Slide from: Robert Collins
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EM Algorithm

Estimate πk=Nk/N Estimate μ1 ,σ1
Estimate μ2 ,σ2 Estimate μ3 ,σ3

Slide from: Robert Collins
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EM Algorithm
Remember that this was a problem...

If an oracle gave us the values of the latent

variables (component that generated each point)

we could work with the complete log likelihood

and the log of that looks much better!

1 1
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k n k k
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 
=  

 
 X π,μ,Σ x μ ,Σ

1 1

( , | ) ( | )nk nk

N K
z z

k n k k

n k

p N
= =

=X Z π,μ,Σ x μ ,Σ

 
1 1

ln ( , | ) ln ln ( | )
N K

nk k n k k

n k

p z N
= =

= +X Z π,μ,Σ x μ ,Σ



126

Latent Variable View

Slide from: Robert Collins

 
1 1

ln ( , | ) ln ln ( | )
N K

nk k n k k

n k

p z N
= =

= +X Z π,μ,Σ x μ ,Σ

Note: for a given n, there are K of these latent variables, and 

only ONE of them is 1 (all the rest are 0)

This is thus equivalent to
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Latent Variable View

Slide from: Robert Collins
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Latent Variable View

can be

estimated

separately

can be

estimated

separately

can be

estimated

separately

Slide from: Robert Collins
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Latent Variable View

can be

estimated

separately

can be

estimated

separately

can be

estimated

separately

These are coupled because the mixing weights

all sum to 1, but it is no big deal to solve

Slide from: Robert Collins
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Latent Variable View

• Unfortunately, oracles don’t exist (or if they do, they 

won’t talk to us)

• So we don’t know values of the zn,k variables

• What EM proposes to do:

• 1) compute p(Z|X, θ), the posterior distribution over 

zn,k, given our current best guess at the values of θ

• 2) compute the expected value of the log likelihood 

ln(p(X,Z|θ)) with respect to the distribution p(Z|X, θ)

• 3) find θnew that maximizes that function.

This is our new best guess at the values of θ.

• 4) iterate...

Slide from: Robert Collins
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Latent Variable View

Slide from: Robert Collins

• Since we don’t know the latent variables, we instead take 

the expected value of the log likelihood with respect to their 

posterior distribution P(Z|X, θ). In the GMM case, this is 

equivalent to “softening” the binary latent variables to 

continuous ones (the expected values of the latent variables)
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Latent Variable View

• So now, after replacing the binary latent 

variables with their continuous expected values:

• All points contribute to the estimation of all 

components

• Each point has unit mass to contribute, but 

splits it across the K components

• The amount of weight a point contributes to a 

component is proportional to the relative 

likelihood that the point was generated by that 

component

Slide from: Robert Collins
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Latent Variable View (with an oracle)

can be

estimated

separately

can be

estimated

separately

can be

estimated

separately

these are coupled because the mixing weights

all sum to 1, but it is no big deal to solve

Slide from: Robert Collins
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Latent Variable View (with EM,              )

can be

estimated

separately

can be

estimated

separately

can be

estimated

separately

these are coupled because the mixing weights

all sum to 1, but it is no big deal to solve

Slide from: Robert Collins
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EM Algorithm for GMM

Slide from: Robert Collins



Another Approach

• We can think of the mixing coefficients as prior 
probabilities for the components

• For a given value of     we can evaluate the 
corresponding posterior probabilities, called 
responsibilities

• These are given from Bayes’ theorem by

136Slide from: Christopher M. Bishop

Posterior Probabilities



Slide from: Christopher M. Bishop 137

Example of 500 points drawn from the mixture of 3 Gaussians. (a) Samples from the 

joint distribution p(z)p(x|z) in which the three states of z, corresponding to the three 

components of the mixture, are depicted in red, green, and blue, and (b) the 

corresponding samples from the marginal distribution p(x), which is obtained by 

simply ignoring the values of z and just plotting the x values. The data set in (a) is said 

to be complete, whereas that in (b) is incomplete. (c) The same samples in which the 

colours represent the value of the responsibilities γ(znk) associated with data point xn, 

obtained by plotting the corresponding point using proportions of red, blue, and green

ink given by γ(znk) for k = 1, 2, 3, respectively.



Posterior Probabilities (colour coded)

Slide from: Christopher M. Bishop 138



Posterior Probability Map

Slide from: Christopher M. Bishop 139



Maximum Likelihood for the GMM

• Gaussian mixture distribution

• The log likelihood function takes the form

• Note: sum over components appears inside the log

• There is no closed form solution for maximum likelihood

Slide from: Christopher M. Bishop 140



Problems and Solutions

• How to maximize the log likelihood

– solved by expectation-maximization (EM) 
algorithm

• How to avoid singularities in the likelihood 
function

– solved by a Bayesian treatment

• How to choose number K of components

– also solved by a Bayesian treatment

Slide from: Christopher M. Bishop 141



EM Algorithm – Informal Derivation

• Let us proceed by simply differentiating the log likelihood
• Setting derivative with respect to      equal to zero gives

giving

which is simply the weighted mean of the data
Slide from: Christopher M. Bishop 142



EM Algorithm – Informal Derivation

• Similarly for the covariances

• For mixing coefficients use a Lagrange multiplier. 
After maximizing

Slide from: Christopher M. Bishop 143



EM Algorithm – Informal Derivation

• The solutions are not closed form since they 
are coupled

• Suggests an iterative scheme for solving 
them:

– Make initial guesses for the parameters

– Alternate between the following two stages:

1. E-step: evaluate responsibilities

2. M-step: update parameters using ML results

Slide from: Christopher M. Bishop 144
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EM – Latent Variable Viewpoint 

• Binary latent variables                   describing which 
component generated each data point 

• Conditional distribution of observed variable

• Prior distribution of latent variables

• Marginalizing over the latent variables we obtain

Slide from: Christopher M. Bishop 146



Expected Value of Latent Variable
• From Bayes’ theorem

Slide from: Christopher M. Bishop 147



Complete and Incomplete Data

complete incomplete

Slide from: Christopher M. Bishop 148



Latent Variable View of EM

• If we knew the values for the latent variables, we 
would maximize the complete-data log likelihood

which gives a trivial closed-form solution (fit each 
component to the corresponding set of data points)

• We don’t know the values of the latent variables

• However, for given parameter values we can compute 
the expected values of the latent variables

Slide from: Christopher M. Bishop 149



Expected Complete-Data Log Likelihood
• Suppose we make a guess         for the parameter 

values (means, covariances and mixing 
coefficients)

• Use these to evaluate the responsibilities
• Consider expected complete-data log likelihood 

where responsibilities are computed using 
• We are implicitly ‘filling in’ latent variables with 

best guess
• Keeping the responsibilities fixed and maximizing 

with respect to the parameters give the previous 
results

Slide from: Christopher M. Bishop 150
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❖Textbook p 48
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( ') '    (1)P p d


=  x x

P is a smoothed (or averaged) version of the density function 
p(x) if we have a sample of size N; therefore, the probability that 
kN points fall in R is then:

!
( | , )  (1 ) (1 )         (2)

!( )!
N N N Nk N k k N k

k N

N N N

N N
P BIN k N P P P P P

k k N k

No. of unique splits k vs N-kN Prob. that kN of particular x-es are in R

Prob. that the rest are not

ESTIMATION OF UNKNOWN PROBABILITY 
DENSITY FUNCTIONS

(NONPARAMETRIC)

Probability that a vector x will fall in region R is:
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and the expected and variance value for kN is:

E(kN) = NP , Var(kN)=NP(1-P) (3)

What is ML estimation of  P = ?

is reached for                         (4)

Therefore, the ratio kN/N is a good estimate for the 

probability P and hence for the density function p. 

❖If p(x) is continuous and that the region R is so small 

that p does not vary significantly within it, we can 

write:

where x is a point within R and V the volume enclosed by R.
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Combining equation (1) , (4) and (5) yields: /
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p
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ˆIf ( ) is continuous,    ( ) ( )  as  ,   if

      0, , 0N
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p x p x p x N
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h
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h
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❖ Parzen Windows

➢ Divide the multidimensional 

space in hypercubes



➢ Define

• That is, it is 1 inside a unit side hypercube centered at 0

• The problem:

• Parzen windows-kernels-potential functions
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The function (xi) is equal to 

one for every point, xi, inside 

the square of unit side length, 

centered at the origin and 

equal to zero for every point 

outside it.

The function               is equal 

to unity for every point xi

inside the square with side 

length equal to h, centered at x

and zero for all the other 

points.

( )ix x

h


−



➢Mean value

•

•

•

•

Hence  unbiased in the limit
160
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➢Variance

• The smaller the h the higher the variance

161

h=0.1, N=1000
h=0.1, N=20000

0, , Νh N h→ → → asymptotically unbiased

If:
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➢The higher the N the better the accuracy

h=0.8, N=1000 h=0.8, N=20000



❖Application to classification:

➢The method

• Remember: l12 likelihood ratio
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❖ Remarks: The Curse Of Dimensionality

➢ In all the methods, so far, we saw that the highest
the number of points, N, the better the resulting 
estimate.

➢ If in the one-dimensional space an interval, filled 
with N points, is adequately (for good estimation), in 
the two-dimensional space the corresponding square 
will require N2 and in the ℓ-dimensional space the ℓ-
dimensional cube will require Nℓ points.

➢The exponential increase in the number of necessary 
points in known as the curse of dimensionality. This 
is a major problem one is confronted with in high 
dimensional spaces.
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Fifty points generated by a uniform distribution lying in the 

(a) one-dimensional unit-length segment and (b) the unit-

length square. In the two-dimensional space the points are 

more spread compared to the same number of points in the 

one-dimensional space.



❖K Nearest Neighbor Density Estimation

➢ In Parzen:

• The volume is constant

• The number of points in the volume is varying

➢Now:

• Keep the number of points             constant

• Leave the volume to be varying

• Again it can be shown [Fuku 90] that asymptotically 

(lim k→+∞, lim N→+∞, lim (k/N) → 0) this is an unbiased and 

consistent estimate of the true pdf, and it is known as the k
Nearest Neighbor (k NN) density estimate. 166
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Application to classification:

l12 likelihood ratio
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❖ NAIVE – BAYES CLASSIFIER

➢Let           and the goal is to estimate 

i = 1, 2, …, M. For a “good” estimate of the pdf 
one would need, say, Nℓ points. 

➢Assume x1, x2 ,…, xℓ mutually independent. Then:

➢ In this case, one would require, roughly, N points 

for each pdf. Thus, a number of points of the 
order N·ℓ would suffice.

➢ It turns out that the Naïve – Bayes classifier 
works reasonably well even in cases that violate 
the independence assumption. 170
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❖ The Nearest Neighbor Rule

➢ Out of the N training vectors, identify the k nearest 
ones to x regardless of class label. k not to be a 
multiple of the number of classes M.

➢ Out of these k identify ki that belong to class ωi

➢

➢ The simplest version k=1 !!!

171

jikk:x jii →     Assign 

An example: 

Using the 11-NN rule
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➢ For large N this is not bad.  It can be shown that: 
if PB is the optimal Bayesian error probability, then:

➢

➢

➢ For small PB:
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174The optimal Bayes decision boundary



❖ Voronoi tesselation

175
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❖ Bayes Probability Chain Rule

➢Assume now that the conditional dependence for 
each xi is limited to a subset of the features 

appearing in each of the product terms. That is:

where

176

BAYESIAN NETWORKS
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➢For example, if ℓ=6, then we could assume:

Then:

➢The above is a generalization of the Naïve – Bayes. 
For the Naïve – Bayes the assumption is:

Ai = Ø, for i =1, 2, …, l

177
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➢A graphical way to portray conditional dependencies
is given below 

178

➢According to this figure we 
have that:

• x6 is conditionally dependent on 
x4, x5.

• x5 on x4

• x4 on x1, x2

• x3 on x2

• x1, x2 are conditionally
independent on other variables.

➢For this case:

1 2 6

6 5 4 5 4 4 2 1 3 2 2 1

( , ,..., )

( | , ) ( | ) ( | , ) ( | ) ( ) ( )

p x x x

p x x x p x x p x x x p x x p x p x

=

    



❖Bayesian Networks

➢Definition: A Bayesian Network is a directed 
acyclic graph (DAG) where the nodes 
correspond to random variables. Each node is 
associated with a set of conditional probabilities 
(densities), p(xi|Ai), where xi is the variable 
associated with the node and Ai is the set of its 

parents in the graph.

➢A Bayesian Network is specified by:

• The marginal probabilities of its root nodes.

• The conditional probabilities of the non-root nodes, 
given their parents, for ALL possible combinations.
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➢The figure below is an example of a Bayesian 
Network corresponding to a paradigm from the 
medical applications field.

180

➢This Bayesian network 
models conditional 
dependencies for an 
example concerning 
smokers (S), 
tendencies to develop 
cancer (C) and heart 
disease (H), together 
with variables 
corresponding to heart 
(H1, H2) and cancer 
(C1, C2) medical tests.



❖ BNs facilitate the description of a collection of beliefs 
by making explicit causality relations and conditional 
independence among beliefs

❖ BNs provide a more efficient way (than by using joint 
distribution tables) to update belief strengths when 
new evidence is observed

❖ Other names: Belief networks, Probabilistic networks,  
Causal networks.

❖ Causal networks can be used to follow how a change 
of certainty in one variable may change certainty of 
other variables.
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➢Once a DAG has been constructed, the joint 
probability can be obtained by multiplying the 
marginal* (root nodes) and the conditional (non-root 
nodes) probabilities.

➢Training: Once a topology is given, probabilities are 
estimated via the training data set. There are also 
methods that learn the topology.

➢Probability Inference: This is the most common task 
that Bayesian networks help us to solve efficiently. 
Given the values of some of the variables in the 
graph, known as evidence, the goal is to compute 
the conditional probabilities for some of the other 
variables, given the evidence.
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* In the study of several random variables, the statistics of each are 

called marginal.



❖ Example:  Consider the Bayesian network of figure 2.29:

Figure 2.29

a) If x is measured to be x=1 (x1), compute P(w=0|x=1) 
[P(w0|x1)].

b) If w is measured to be w=1 (w1) compute P(x=0|w=1) 
[P(x0|w1)].
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X                            Y                            Z                              W

To be 
provided

Can be 

derived



➢ For a), a set of calculations are required that propagate
from node X to node W. It turns out that P(w0|x1) = 0.63.

➢ For b), the propagation is reversed in direction. It turns 
out that P(x0|w1) = 0.4.
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In a similar way, P(z0|x1) = 1 - P(z1|x1) = 0.54

P(z1|x1) = P(z1|y1, x1)P(y1|x1) + P(z1|y0, x1)P(y0|x1)

= P(z1|y1)P(y1|x1) + P(z1|y0)P(y0|x1)

=(0.25)(0.4) + (0.6)(0.6) = 0.46



❖ In general, the required inference information is computed 
via a combined process of “message passing” among the 
nodes of the DAG.

❖Complexity:

➢For singly connected graphs, message passing 
algorithms amount to a complexity linear in the 
number of nodes. 185

In a similar way,

It is left as an exercise to show that P(x0|w1) = 0.4.



Bayesian networks with tree structure

❖ Compute the conditional 

probability P(s|z = z0 ), where 

z = z0 is the evidence.

❖Marginalization …
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We exploit the structure of the Bayesian network in order to reduce 

the computational burden.

If the discrete variables can take L values, the complexity of the 

previous computations amounts to L5 operations.
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The order of L2 , instead of the order of L5 demanded for the 

brute-force computation
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