
K-Means Clustering

• Clustering is a form of unsupervised learning 
whereby a set of observations (i.e., data points) is 
partitioned into natural groupings or clusters of 
patterns in such a way that the measure of similarity 
between any pair of observations assigned to each 
cluster minimizes a specified cost function

• Let 𝒙𝑖 𝑖=1
𝑁 denote a set of multidimensional 

observations that is to be partitioned into a 
proposed set of K clusters, where K is smaller than 
the number of observations, N.
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Examples of Clustering Applications

• Marketing: Help marketers discover distinct groups in 

their customer bases, and then use this knowledge to 

develop targeted marketing programs

• Land use: Identification of areas of similar land use in 

an earth observation database

• Insurance: Identifying groups of motor insurance 

policy holders with a high average claim cost

• Urban planning: Identifying groups of houses 

according to their house type, value, and geographical 

location
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• Seismology: Observed earthquake epicenters should 
be clustered along continent faults

• Often used as an exploratory data analysis tool

• In one-dimension, a good way to quantize real-
valued variables into K non-uniform buckets

• Used on acoustic data in speech understanding to 
convert waveforms into one of K categories (known 
as Vector Quantization)

• Also used for choosing color palettes on old 
fashioned graphical display devices!
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What Is a Good Clustering?

• A good clustering method will produce clusters 

with

– High intra-class similarity

– Low inter-class similarity 

• Precise definition of clustering quality is difficult

– Application-dependent

– Ultimately subjective
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Requirements for Clustering in Data Mining 

• Scalability

• Ability to deal with different types of attributes

• Discovery of clusters with arbitrary shape

• Minimal domain knowledge required to determine 

input parameters

• Ability to deal with noise and outliers

• Insensitivity to order of input records

• Robustness w.r.t. high dimensionality

• Incorporation of user-specified constraints

• Interpretability and usability
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Similarity and Dissimilarity Between Objects

• Distance measure between instances xi and xj

Minkowski (Lp) (Euclidean for p = 2)

City-block distance

• Euclidean distance (p = 2):

• Properties of a metric d(xi, xj) :

1) d(xi, xj)  0                2) d(xi, xi) = 0

3) d(xi, xj) = d(xj, xi)     4) d(xi, xj)  d(xi, xk) + d(xk, xj)
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Major Clustering Approaches

• Partitioning: Construct various partitions and then 

evaluate them by some criterion

• Hierarchical: Create a hierarchical decomposition of the 

set of objects using some criterion

• Model-based: Hypothesize a model for each cluster 

and find best fit of models to data

• Density-based: Guided by connectivity and density 

functions
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Partitioning Algorithms
• Partitioning method: Construct a partition of a database D

of n objects into a set of K clusters

• Given a K, find a partition of K clusters that optimizes the 

chosen partitioning criterion

– Global optimal: exhaustively enumerate all partitions

– Heuristic methods: K-means and K-medoids algorithms

– K-means (MacQueen, 1967): Each cluster is represented 

by the center of the cluster

– K-medoids or PAM (Partition around medoids) 

(Kaufman & Rousseeuw, 1987): Each cluster is 

represented by one of the objects in the cluster  
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K-Means Clustering
• Given K, the K-means algorithm consists of 

four steps:

– Select initial centroids at random.

– Assign each object to the cluster with the 
nearest centroid.

– Compute each centroid as the mean of the 
objects assigned to it.

– Repeat previous 2 steps until no change.

• Optimal partition achieved via minimizing the sum 
of squared distance to its “representative object” 
in each cluster
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K-means
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1. Ask user how many 
clusters they’d like. 
(e.g. K=5) 



K-means
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1. Ask user how many 
clusters they’d like. 
(e.g. K=5) 

2. Randomly guess K 
cluster Center 
locations



K-means
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1. Ask user how many 
clusters they’d like. 
(e.g. K=5) 

2. Randomly guess K 
cluster Center 
locations

3. Each datapoint finds 
out which Center it’s 
closest to. (Thus 
each Center “owns” 
a set of datapoints)



K-means
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1. Ask user how many 
clusters they’d like. 
(e.g. K=5) 

2. Randomly guess K 
cluster Center 
locations

3. Each datapoint finds 
out which Center it’s 
closest to.

4. Each Center finds 
the centroid of the 
points it owns



K-means
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1. Ask user how many 
clusters they’d like. 
(e.g. K=5) 

2. Randomly guess K 
cluster Center 
locations

3. Each datapoint finds 
out which Center it’s 
closest to.

4. Each Center finds 
the centroid of the 
points it owns…

5. …and jumps there

6. …Repeat until 
terminated!



K-means 
Start
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Advance apologies: in 
Black and White this 
example will deteriorate

Example generated by 
Dan Pelleg’s super-duper 
fast K-means system:

Dan Pelleg and Andrew 
Moore. Accelerating Exact 
k-means Algorithms with 
Geometric Reasoning. 
Proc. Conference on 
Knowledge Discovery in 
Databases 1999, 
(KDD99) (available on 
www.autonlab.org/pap.html)



K-means 
continues

…
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K-means 
continues

…
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K-means 
continues

…
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K-means 
continues

…
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K-means 
continues

…
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K-means 
continues

…
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K-means 
continues

…
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K-means 
continues

…

24



K-means 
terminates
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– If n is the known number of patterns and K the 
desired number of clusters, the K-means 
algorithm is (K samples randomly chosen from 
the dataset as initial cluster centers):

Begin

initialize n, K, 1, 2, …, K(randomly selected)

do classify n samples according to 
nearest i

recompute i

until no change in i

return 1, 2, …, K

End

Exercise 2 p.594 (Textbook)
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Example:

The 25 samples shown in the table were drawn sequentially 

from the following mixture with μ1 = −2 and μ2 = 2.
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Figure 10.1: The K-means clustering procedure is a form of stochastic hill

climbing in the log-likelihood function. The contours represent equal log-

likelihood values for the one-dimensional data in Example 1. The dots

indicate parameter values after different iterations of the K-means

algorithm. Six of the starting points shown lead to local maxima, whereas

two (i.e., μ1(0) = μ2(0)) lead to a saddle point near μ = 0.

• Considering the example in the previous figure



• Figure 10.1 shows the sequence of values for 
 𝝁1 and  𝝁2 obtained for several different 
starting points. Since interchanging  𝝁1and  𝝁2
merely interchanges the labels assigned to 
the data, the trajectories are symmetric 
about the line  𝝁1 =  𝝁2. The trajectories lead 
either to the point  𝝁1 = −2.176,  𝝁2 = 1.684
or to its symmetric image. This is close to the 
solution found by the maximum-likelihood 
method (viz.,  𝝁1 = −2.130 and  𝝁2 = 1.688), 
and the trajectories show a general 
resemblance to those shown in Example 1.

29



30

FIGURE 10.3. Trajectories for the means of the K-means 
clustering procedure applied to two-dimensional data. The final 
Voronoi tesselation (for classification) is also shown— the means 
correspond to the “centers” of the Voronoi cells. In this case, 
convergence is obtained in three iterations.

K=3

The three initial 

cluster centers, 

chosen randomly 

from the training 

points.



Comments on the K-Means Method

• Strengths
– Relatively efficient: O(tKn), where n is # objects, K is     

#clusters, and t  is #iterations. Normally, K, t << n.

– Often terminates at a local optimum. The global optimum may 
be found using techniques such as simulated annealing and 
genetic algorithms

• Weaknesses
– Applicable only when mean is defined (what about categorical 

data?)

– Need to specify K, the number of clusters, in advance

– Trouble with noisy data and outliers

– Not suitable to discover clusters with non-convex shapes
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Fuzzy K-means clustering

• In every iteration of the classical K-means procedure, 
each data point is assumed to be in exactly one cluster

• We can relax this condition and assume that each 
sample xj has some graded or “fuzzy” cluster 
membership μi(xj) in cluster ωi, where 0≤ μi(xj) ≤ 1.

• At root, these “memberships” are equivalent to the 
probabilities

• In the resulting fuzzy K-means clustering algorithm we 
seek a minimum of a global cost function
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where b is a free parameter chosen to adjust the

“blending” of different clusters. If b is set to 0, this

criterion function is merely a sum-of-squared errors

criterion.

If b > 1, criterion allows each pattern to belong to

multiple clusters. The probabilities of cluster

membership for each point are normalized as

At the solution, i.e., the minimum of L, we have

(25)



Then we have

and

(27)

(28)

Algorithm 2 (Fuzzy K-means clustering)
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At early iterations the means 

lie near the center of the full 

data set because each point 

has a non-negligible 

“membership” (i.e., 

probability) in each cluster. 

At later iterations the means 

separate and each 

membership tends toward 

the value 1.0 or 0.0.

The classical K-means algorithm is just of special 

case where the memberships for all points obey



Application
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• Colour-Based Image Segmentation Using K-means 

Step 1: Loading a colour image of tissue stained with 

hemotoxylin and eosin (H&E)

http://www.mathworks.co.uk/help/images/examples/color-based-segmentation-using-k-means-clustering.html
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• Colour-Based Image Segmentation Using K-means 

Step 2: Convert the image from RGB colour space to L*a*b* 

colour space

• Unlike the RGB colour model, L*a*b* colour is 

designed to approximate human vision.

• There is a complicated transformation between RGB 

and L*a*b*.

(L*, a*, b*) = T(R, G, B).

(R, G, B) = T’(L*, a*, b*).

Application

http://www.mathworks.co.uk/help/images/examples/color-based-segmentation-using-k-means-clustering.html
https://en.wikipedia.org/wiki/Lab_color_space
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• Colour-Based Image Segmentation Using K-means 

Step 3: Undertake clustering analysis in the (a*, b*) colour 

space with the K-means algorithm

• In the L*a*b* colour space, each pixel has a 

properties or feature vector:  (L*, a*, b*).

• Like feature selection, L* feature is discarded. As 

a result, each pixel has a feature vector (a*, b*).

• Applying the K-means algorithm to the image in 

the a*b* feature space where K = 3 by applying 

the domain knowledge.

Application

http://www.mathworks.co.uk/help/images/examples/color-based-segmentation-using-k-means-clustering.html
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• Colour-Based Image Segmentation Using K-means 

Step 4: Label every pixel in the image using the results from 

K-means clustering (indicated by three different grey 

levels)

Application

http://www.mathworks.co.uk/help/images/examples/color-based-segmentation-using-k-means-clustering.html
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• Colour-Based Image Segmentation Using K-means 

Step 5: Create Images that Segment the H&E Image by Colour

• Apply the label and the colour information of each 

pixel to achieve separate colour images 

corresponding to three clusters.              

“blue” pixels “white” pixels “pink” pixels

Application

http://www.mathworks.co.uk/help/images/examples/color-based-segmentation-using-k-means-clustering.html
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• Colour-Based Image Segmentation Using K-means 

Step 6: Segment the nuclei into a separate image with the L* 

feature

• In cluster 1, there are dark and light blue objects (pixels). The dark 

blue objects (pixels) correspond to nuclei (with the domain knowledge).

• L* feature specifies the brightness values of each colour.

• With a threshold for L*, we achieve an image containing the nuclei only.

Application

http://www.mathworks.co.uk/help/images/examples/color-based-segmentation-using-k-means-clustering.html

