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Probability and Statistics

Probability P(A) of an event A : a real number between 0 to 1.

Joint probability P(A n B) : probability that both A and B occurs in a
single experiment.

P(AnB) = P(A)P(B) if A and B and independent.

Probability P(A u B) of union of A and B: either A or B occurs in a single
experiment.

P(AuB) = P(A) + P(B) if A and B are mutually exclusive.

Conditional probability:

o P(ANB)

P(B)
Therefore, the Bayes rule: P(B| A)P(A)
P(AIB)P(B) = P(B| A)P(A)and P(A| B) =——_ 0.

Total probability: let A,..., A, suchthat D" P(A)=1 then

P(B)=>Y" P(BIA)P(A)



Probability density function (pdf): p(x) for a continuous random

variable x b
P(a<x<h)= j p(x)dx

Total and conditional probabilities can also be extended to pdf’s.

Mean and Variance: let p(x) be the pdf of a random variable x
E[x]= | xp(x)dx,and * = [ (x—E[x])° p(x)dXx
Statistical independence:
p(x,y) = p.(x)p, (y)

Kullback-Leibler divergence (Distance?) of pdf’'s

L(p(), () = pexyin 2% o
p()

Pay attention that L(P(X), p'(X)) # L(p'(X), p(X))
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Characteristic function of a pdf:

() = [ p() exp( j€2"X)cx = Efexp( €2'X)]

D(s) = j: p(x) exp(sx)dx = E[exp(sx)]

2"d Characteristic function: ¥(s) = In ©(s)

d"®(0 )
n-th order moment: S i E[X"] e
ds
Cumulants: . _ d ™' (0) ,,/
! ds" — >

Megative Skew

When E[x] =0, then
Ky, = O, K, = E[X] = 0, (0) Mesokurtic

{Normal)

(+) Leptokurtic

K, = E[XZ] = 02, K, = E[Xg] (SkewneSS) (-) Platykurtic
Kk, = E[x*]-30" (Kurtosis)

Positive Skew

General
Forms of
Kurtosis



http://upload.wikimedia.org/wikipedia/commons/b/b3/Skewness_Statistics.svg
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Discrete Distributions
Binomial distribution B(n,p):

Repeatedly grab n balls, each with a probability p of getting a black
ball. The probability of getting k black balls:

P(K) = @ p*(1— p)™*

Poisson distribution
probability of # of events occurring in a fixed period of time if these

events occur with a known average. :
ﬂke_ﬂ o A=1

P(k;A) =

When n — oo and np remains constant,
B(n, p) — Poisson(np)



http://upload.wikimedia.org/wikipedia/commons/c/c1/Poisson_distribution_PMF.png

Normal (Gaussian) Distribution

< Univariate N(y, ¢2):

1.0 1] P
1 (X = 11)? [
p(X) = exp(— ) g o
\N27mo 20° 2 /\ // \\
< Multivariate N(, 2): ) \ \\
1 1 0.0 ; : (/ ; ‘ \\
p(X)=—eXp(——(x— ) ZH(x— )j R 5 LB S O s
2| X 2 ¥ S R o AR Sons
with the mean x4 and the covariance matrix i %:é:i: / ,§/
_ . = f_\o.ei ,u:z,cr:o.s.—/ //
O W3 & 19 ! /
y_ O 022 e, b iF /////
: 0.2 V’/,
_Gll GIZ N GIZ_ . —5“'—4‘“—3"'—2"‘—1" )0( 1 2‘ g 4 5
where o7 = E[(x. — 1 )*]and :
oy =0 = E[(X — 14)(X; — ;)] :
o 34.1% 34.1%
< Central limit theorem: .
Let z :Zi"_lxi, then 2= # ~ N(0,1) whenn - =
. (o)

irrespective of the pdf's of x.'s.


http://upload.wikimedia.org/wikipedia/commons/7/74/Normal_Distribution_PDF.svg
http://upload.wikimedia.org/wikipedia/commons/c/ca/Normal_Distribution_CDF.svg
http://upload.wikimedia.org/wikipedia/commons/8/8c/Standard_deviation_diagram.svg

Other Continuous Distributions

< Chi-square (X?) distribution of k degrees of freedom:

distribution of a sum of squares of kindependent standard normal
random variables, that is, y* = x? + xZ +---+ xZ where x. ~ N(0,1)

P y e Y 2step(y), 4
X2 (k [ 2) =

where I'(z) = joootz‘le‘tdt

% Mean: k, Variance: 2k

% Assume X~ y°(k)
» Then (X-— k)/ﬂ ~N(0,1) ask — oo by central limit theorem.

> Also 4/2X is approximately normally distributed with mean v 2k —1
and unit variance.


http://upload.wikimedia.org/wikipedia/commons/2/21/Chi-square_distributionPDF.png

Other Continuous Distributions

% t-distribution: estimating mean of a normal distribution when sample
size is small.

A t-distributed variable q X/~zlk Where x~N(0,1) and z = y*(Kk)

D((k+1)/2) oy —
p(a) = 1 S .
VKT (k1 2) k - B
Mean: O for k > 1, 5
variance: k/(k-2) for k > 2 / o

&

)

» B-distribution: Beta(a,3): the posterior distribution of p of a binomial
distribution after a—1 events with pand B — 1 with 1 — p.
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Linear Algebra

Eigenvalues and eigenvectors:
there exists A and v such that Av= Av

Real matrix A is called positive semidefinite if xTAx = 0 for every
nonzero vector X;

A is called positive definite if xTAx > 0.
Positive definite matrixes act as positive numbers.
All positive eigenvalues
If A is symmetric, AT=A,
then its eigenvectors are orthogonal, v;'v;=0.
Therefore, a symmetric A can be diagonalized as

A=DAD" and ®'AD = A
where ® =[v,,v,,...v,]and A =diag (4, 4,,...4,)



Correlation Matrix and Inner Product Matrix

Principal component analysis (PCA)

< Let x be a random variable in R/, its correlation matrix Z=E[xx'] is
positive semidefinite and thus can be diagonalized as

> =DOAD'

% Assign X'=®@'x ,then T'=E(X'X" )=D'ZD=A
< Further assignX''= A™/*®"x, then T"=E(X"'X'"" ) =1
Classical multidimensional scaling (classical MDS)

< Given a distance matrix D={d;}, the inner product matrix G={x;"x;} can
be computed by a bidirectional centering process

G :—%(I —EeeT)D(I —leeT) wheree =[11... 1]
n n

< G can be diagnolized as G = WYA'¥'
% Actually, nA and A’ share the same set of eigenvalues, and
® = X"¥ where X =[X,,..., X.]'

Because G = XX, X can then be receoveredas X = WA™?



Cost Function Optimization

< Find B so that a differentiable function J() is minimized. ~———
< Gradient descent method /,,ff///"’f;:;i_i_}:i.:_'._t.:::;;f.if“\\“\_
> Starts with an initial estimate 8(0) /,/ / \\\\\\\ A\
> Adjust 8 iteratively by ;" | :" | .-"’/;_-)“\;, | ‘ 3
gn ew = Ooig A0 l \ \ x4\ /:/f /, / /,
AO = —u&]a—(;) lg—g,, » Where x>0 - /// J

gl Dol TV Sl BT K& a4,
J(0)=1J (00) 0= QO)T g+ % (60— QO)T H(0 - 6)0) +0((0- 00)3) ——

81(6)

2
Whereg :ﬁb:é’o and H(I’ J) :a\]—@l

00 0ot
Ignore higher order terms within a neighborhood of 6°
Bpon = 0° = (1 = tiH)(84 — 6°)
H is positive semidefini te, then H=®AD', we get
D (0,0, —0°) = (1 = A)D (0,4 —0°)
which will converge if every|1— . |<1, e, u<2/4_..
Therefore, the convergence speed is decided by 4, /A .. M


http://upload.wikimedia.org/wikipedia/commons/7/79/Gradient_descent.png

s+ Newton’s method
> Adjust 0 iteratively by

4, aJ(@
Ab = _Holld % |9=90|d

» Converges much faster that gradient descent.
In fact, from the Taylor expansion, we have

N =H(0-6°)

Oroy = Orsg —H  (H(B —6%)) = 6°

» The minimum is found in one iteration.

% Conjugate gradient method
A‘9t =0, _:BtA‘gt—l

0J (0)

where g, = =21,

and g, =39 o 5 90(8-00)
gt—lgt—l gt—lgt—l



http://upload.wikimedia.org/wikipedia/commons/d/da/Newton_optimization_vs_grad_descent.svg
http://upload.wikimedia.org/wikipedia/commons/b/bf/Conjugate_gradient_illustration.svg

Constrained Optimization with
Equality Constraints

Sx.y)
Minimize J(0)

subject to f(8)=0 for i=1, 2, ..., m

% Minimization happens at

aJ(6) _ , oi(9)
00 =~ 00

% Lagrange multipliers: construct
L(8,2)=3(0)-> 4T, (6)
i=1

oL(6,2) oL(6,4)
==

and solve 0

13


http://upload.wikimedia.org/wikipedia/commons/5/55/LagrangeMultipliers3D.png
http://upload.wikimedia.org/wikipedia/commons/b/bf/LagrangeMultipliers2D.svg

Constrained Optimization with
Inequality Constraints

Minimize J(0) subject to f(6)=0 for i=1, 2, ..., m

» £(8)=0i=1, 2, ..., m defines a feasible region in which the answer lies.
o Karush—Kuhn—Tucker (KKT) conditions:

A set of necessary conditions, which a local optimizer 6. has to satisfy.
There_exists a vector A of Lagrange multipliers such that

5

@) 00 e el -[ S al—
(2) A4 =0fori=12,..,m / 7 AP
3) Af.(0.)=0fori=12,..,m )/_ﬁ,_ e L
(1) Most natural condition. i \\\ R
(2) f(6.) is inactive if A, =O0. ey e

(3) A, 20 if the minimum is on f(6.).
(4) The (unconstrained) minimum in the interior region if all A, =0.
(5) For convex J(0) and the region, local minimum is global minimum.

(6) Still difficult to compute. Assume some f,(6.)’s active, check A, 20. ")



+» Convex function:
f(0)ScR' —Nis convax if V6,6 €S,1[0]]
f(A0+(1-1)0) <At (@) +(1-A) T (6")
++» Concave function:
f(10+(1-1)0')= At (0)+(1- 1) T(6')
» Convex set:
S < R'is aconvax setif V0,6 €S, [0]]

10+(1-1)0) €S

Local minimum of a convex function is also global minimum.
If f(60)is concave, then X ={@| f () > b}is a convex set.

f r_mT f rH]* f [r‘?]‘L &1 %1

# 6 8



< Min-Max duality

Game : A pays F(x, y) $ to B while A chooses x and B chooses y
A's goal : min max F (X, y), B'sgoal : max min F(X, y)
X y y X

The two problems are dual to each other.
In general :min F(Xx,y) < F(X,y) <max F(x,Y)
X y

Therefore, max min F (X, y) <min max F(X, y)
y X X y

SR

Saddle point condition : % : R >
If there exists (X.,Y.) such that

F(X,Y) < F(X,Y.) <F(X V)

or equivalent ly :

F (X, Y.) = m;c;lX mxin F(X,y)= mxin m?.X F(X,Y)

16


http://upload.wikimedia.org/wikipedia/commons/4/40/Saddle_point.png

% Lagrange duality
> Recall the optimization problem:
Minimize J(8) s.t.f.(6)=>0fori=12,....m

Lagrange function :L(6,4) =J(0)->_ A f.(6)
i=1

Because max L(6,4) =J (), we have
min J(@) = min max L(6, 1)

» Convex Programming
For a large class of applicatio ns, J (&) is convex, f.(8)'s are concave
then, the minimizati on solution (6., A.)is a saddle point of L(&,A)
L(6.,4) < L(6.,A) <L(6, L)
L(6., L) = mein max L(6, 1) = max mgin L(6, 1)

120
Therefore, the optimizati on problem becomes max mgn L(G,1),0r

max L(6,41)  subject to % L(6,4)=0

A>0

MUCH SIMPLER!

17



Mercer’s Theorem and the Kernel Method

% Mercer’s theorem:
Let x e R' and given a mapping ¢(x) e H ,
(H denotes Hilbert space, I.e. finite or infinite Euclidean space)

the inner product <¢(x), ¢(y)> can be expressed as a kernelfunction

(%), 4(¥)) = K(x,Y)
where K (X, y) Is symmetric, continuous , and positive semi - definite.
The opposite is also true.

The kernel method can transform any algorithm that solely depends on
the dot product between two vectors to a kernelized vesion, by
replacing dot product with the kernel function. The kernelized version
is equivalent to the algorithm operating in the range space of .
Because kernels are used, however, ¢ is never explicitly computed.

18
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