
9.10 Problem-Solving Strategies 

In this Chapter, we have seen how Biot-Savart and Ampere’s laws can be used to 
calculate magnetic field due to a current source.  

9.10.1 Biot-Savart Law: 

The law states that the magnetic field at a point P due to a length element ds 
r

 carrying a 
steady current I located at r 

r
away is given by 

r r rr μ0 I ds r× ˆ μ0 s rI d ×
dB = 

2 
= 

34π r 4π r 

The calculation of the magnetic field may be carried out as follows: 

(1) Source point: Choose an appropriate coordinate system and write down an expression 
for the differential current element I ds 

r
, and the vector r 

r
' describing the position of I ds 

r
. 

The magnitude r ' |= r 
r

' | is the distance between I d
r
s and the origin. Variables with a 

“prime” are used for the source point.  

(2) Field point: The field point P is the point in space where the magnetic field due to the 
current distribution is to be calculated. Using the same coordinate system, write down the 
position vector r

r
P for the field point P. The quantity rP =|r 

r
P | is the distance between the 

origin and P. 

(3) Relative position vector: The relative position between the source point and the field 
r r r

= −rpoint is characterized by the relative position vector r rP ' . The corresponding unit 

vector is 

r 
r

r 
r

−r 
r

' 
r̂ = =  rP 

r
r |rP −r ' | 

r r r
where r = =  −| | | r ' |  is the distance between the source and the field point P.r rP 

(4) Calculate the cross product d
r

× ˆ s r  
r r

. The resultant vector gives the direction ofs r  or d ×
r

the magnetic field B , according to the Biot-Savart law. 

r
(5) Substitute the expressions obtained to dB and simplify as much as possible. 

r
(6) Complete the integration to obtain B if possible. The size or the geometry of the 
system is reflected in the integration limits. Change of variables sometimes may help to 
complete the integration. 
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Below we illustrate how these steps are executed for a current-carrying wire of length L 
and a loop of radius R. 

Current distribution Finite wire of length L Circular loop of radius R 

Figure 
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(4) The cross product 
ˆd ×s r  

r
2 2 

ˆ 
ˆ 

y dx  
d 

y x 
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× =  

′+ 

k 
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(5) Rewrite dB 
r

0 
2  2  3/  2  

ˆ 

4 (  )  

I y dx  
d 
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π 
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(6) Integrate to get B 
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9.10.2 Ampere’s law: 
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Ampere’s law states that the line integral of 
r

⋅d
r

B s around any closed loop is proportional 
to the total current passing through any surface that is bounded by the closed loop: 

r
Ñ∫ B s⋅ d

r 
= μ0 enc  I 

To apply Ampere’s law to calculate the magnetic field, we use the following procedure: 

(1) Draw an Amperian loop using symmetry arguments.  

(2) Find the current enclosed by the Amperian loop. 

(3) Calculate the line integral Ñ
r 

⋅d
r 

 around the closed loop. ∫ B s  

(4) Equate Ñ
r 

⋅d
r 

with μ I and solve for B 
r

∫ B s  0 enc  . 

Below we summarize how the methodology can be applied to calculate the magnetic field 
for an infinite wire, an ideal solenoid and a toroid. 

System Infinite wire Ideal solenoid Toroid 

Figure 

(1) Draw the Amperian 
loop 

(2) Find the current 
enclosed by the 
Amperian loop 
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(3) Calculate ⋅d∫ B s  
r r
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